PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolution of crystallographic texture and strain in a fine-grained Ni3Al (Zr, B) intermetallic alloy during cold rolling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we investigate the structural evolution of a fine-grained Ni3Al (Zr, B) intermetallic-based alloy during cold rolling. X-ray diffraction (XRD) and field emission gun (FEG) scanning electron microscopy (SEM) were used with an electron backscattered diffraction (EBSD) system to analyse changes in the ordering, microstructure, microtexture and lattice strain during plastic deformation of the investigated alloy. The results showed that the Ni3Al (Zr, B) intermetallic-based alloy underwent extensive microstructural and ordering changes upon plastic deformation. This transformation was facilitated by a change in the rolling texture from that of a pure metal to that of an alloy. This textural transition could be attributed to the localisation of the plastic deformation in the form of intense shearing. The occurrence of mechanical twinning was not directly confirmed by the experimental results; therefore, the reordering transition could also have affected the occurrence of the shear banding. The lattice strain was also analysed using the EBSD method (using local misorientation or pattern quality approaches) and microhardness measurements, which showed that the observed structural transformation was also facilitated by an accommodation process that produced a partial release of stored energy.
Rocznik
Strony
550--560
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
  • Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. S. Kaliskiego 2 Street, 00-908 Warsaw, Poland
autor
  • Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. S. Kaliskiego 2 Street, 00-908 Warsaw, Poland
  • Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. S. Kaliskiego 2 Street, 00-908 Warsaw, Poland
autor
  • Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. S. Kaliskiego 2 Street, 00-908 Warsaw, Poland
Bibliografia
  • [1] S.C. Deevi, V.K. Sikka, Nickel and iron aluminides: an overview on properties, processing and applications, Intermetallics 4 (1996) 357–375.
  • [2] P. Jóźwik, Z. Bojar, Analysis of grain size effect on tensile properties of Ni3Al-based intermetallic strips, Archives of Metallurgy and Materials 34 (2007) 1103–1109.
  • [3] G.D. Sulka, P. Jóźwik, Electrochemical behavior of Ni3Al-based intermetallic alloys in NaOH, Intermetallics 19 (2011) 974–981.
  • [4] N.S. Stoloff, C.T. Liu, S.C. Deevi, Emerging applications of intermetallics, Intermetallics 8 (2000) 1313–1320.
  • [5] E.P. George, C.T. Liu, H. Lin, D.P. Pope, Environmental embrittlement and other causes of brittle fracture of Ni3Al, Materials Science and Engineering A 192–193 (1995) 277–288.
  • [6] E.P. George, C.T. Liu, D.P. Pope, Mechanical behavior of Ni3Al: effects of environment, strain rate, temperature and boron doping, Acta Materialia 44 (1996) 1757–1763.
  • [7] J.W. Cohron, E.P. George, L. Heatherly, C.T. Liu, R.H. Zee, Effect of low-pressure hydrogen on the room-temperature tensile ductility and fracture behavior of Ni3Al, Intermetallics 4 (1996) 497–502.
  • [8] E.P. George, C.T. Liu, D.P. Pope, Fracture in Ni3Al: environmental and dopant effects, Physica Status Solidi (A) 160 (1997) 517–529.
  • [9] K. Aoki, O. Izumi, Improvement in room-temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition, Nippon Kinzoku Gakkashi 43 (1979) 1190–1196.
  • [10] B. Zhou, M. Gao, Y.T. Chou, Effect of boron on grain boundary distribution in Ni3Al, Scripta Materialia 37 (1997) 341–346.
  • [11] T.K. Chaki, Boron in polycrystalline Ni3Al-mechanism of enhancement of ductility and reduction of environmental embrittlement, Materials Science and Engineering A 190 (1995) 109–116.
  • [12] F.H. Wang, J.X. Shang, J.M. Li, C.Y. Wang, The effects of boron and hydrogen on the embrittlement of polycrystalline Ni3Al, Intermetallics 8 (2000) 589–593.
  • [13] S. Hanada, S. Watanabe, W.-Y. Kim, N. Masahashi, M.-S. Kim, Microstructure control and ductility in Ni3Al polycrystals, Materials Science and Engineering A239–240 (1997) 309–316.
  • [14] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc., Reading, MA, 1978.
  • [15] C.C. Merriman, D.P. Field, P. Trivedi, Orientation dependence of dislocation structure evolution during cold rolling of aluminum, Materials Science and Engineering A 494 (2008) 28–35.
  • [16] S. Wroński, J. Tarasiuk, B. Bacroix, A. Baczmański, C. Braham, Investigation of plastic deformation heterogeneities in duplex steel by EBSD, Materials Characterization 73 (2012) 52–60.
  • [17] J. Schwartz, L. Mukul Kumar, P. Adams, Field, Electron Backscatter Diffraction in Materials Science, second ed., Springer, New York, NY, 2009.
  • [18] S. Ghosh Chowdhury, Effect of boron in Ni3Al: structural- transformation-induced ductilization, Philosophical Magazine Letters 74 (1996) 327–330.
  • [19] B. Bhattacharya, R.K. Ray, Deformation behavior of a Ni3Al (B,Zr) alloy during cold rolling: Part I. Changes in order and structure, Metallurgical and Materials Transactions A 31A (2000) 3001–3010.
  • [20] B. Bhattacharya, R.K. Ray, Deformation behavior of a Ni3Al (B,Zr) alloy during cold rolling: Part II. Microstructural and textural changes, Metallurgical and Materials Transactions A 31A (2000) 3011–3021.
  • [21] S. Ghosh Chowdhury, R.K. Ray, A.K. Jena, Deformation- induced structural transformation in boron-doped Ni76Al24, Intermetallics 15 (2007) 260–269.
  • [22] J. Ball, G. Gottstein, Large strain deformation of Ni3Al + B: Part I. Microstructure and texture evolution during rolling, Intermetallics 1 (1993) 171–185.
  • [23] T. Leffers, R.K. Ray, The brass-type texture and its deviation from the copper-type texture, Progress in Materials Science 54 (2009) 351–396.
  • [24] H.P. Karnthaler, E.Th. Muhlbacher, C. Rentenberger, The influence of fault energies on anomalous mechanical properties of Ni3Al alloys, Acta Materialia 44 (1996) 547–560.
  • [25] M. Kamaya, A.J. Wilkinson, J.M. Titchmarsh, Measurement of plastic strain of polycrystalline material by electron backscatter diffraction, Nuclear Engineering and Design 235 (2005) 713–725.
  • [26] J. Liu, M. Mato, R.D. Doherty, Shear banding in rolled dispersion hardened AlMg2Si alloys, Scripta Metallurgica 23 (1989) 1811–1816.
  • [27] J. Hirsch, K. Lücke, M. Hatherly, Mechanism of deformation and development of rolling textures in polycrystalline fcc metals-III. The influence of slip inhomogeneities and twinning, Acta Metallurgica 36 (1988) 2905–2927.
  • [28] J. Tarasiuk, Ph. Gerber, B. Bacroix, Estimation of recrystallized volume fraction from EBSD data, Acta Materialia 50 (2002) 1467–1477.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3421ceae-349e-412b-9bee-6aeace5c2f12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.