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INTELLIGENT CONTROLL OF THE GRIPPING 

FORCE OF AN OBJECT BY TWO COMPUTER-

CONTROLLED COOPERATIVE ROBOTS  

Abstract: 

This paper presents a method based on Multiple Adaptive Neuro-Fuzzy Inference 

System (MANFIS) to regulate the handling force of a common object. The foundation 

of this method is the prediction of the inverse dynamics of a cooperative robotic system 

made up of two 3-DOF robotic manipulators. Considering the lack of slippage in the 

contact between the tool and the object, the object is moved. To create and feed  

the MANFIS database, the inverse kinematics and dynamic equations of motion for the 

closed chain of motion for both arms are established in Matlab. Results from  

a SimMechanic simulation are given to demonstrate how well the suggested MANFIS 

controller works. Several manipulated object movements covering the shared work-

space of the two manipulator arms are used to test the proposed control strategy.  

The simulation results indicate that the proposed control strategy is effective in 

regulating the handling force of a common object with varying desired forces, and does 

not require the use of force sensors on the object-tool contact. 

1. INTRODUCTION  

Modern automated production is increasingly using three-degree-of-freedom (3-DOF) 

robot manipulators that are affordable. The use of manipulator control, analysis of cinematic 

content, analysis of the dynamic behavior of multiple robot manipulators, and mathematical 

modeling tasks are pertinent and important. Numerous academic articles examine the 

modeling strategies used by cinematic, dynamic, and multilink robot manipulators. For 

instance, Liu et al. (2017) and Arian et al. (2017) both perform mathematical modeling of 

the cinematic and dynamic behavior of the 3-DOF Gantry-Tau manipulator. Along with the 

cinematic analysis of the manipulator, the problems with trajectory planning and 

transformation are also covered. 

The filming of a three-link manipulator used in the automotive industry is examined in 

the article (Herrero et al., 2018). The ability of cooperative robot systems to move and 

manipulate objects is their main advantage. Robots can cooperate with one another using 

these systems to complete tasks. In other words, multiple robots can move the object, where 
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a single robot cannot, by sharing the load or burden among them. Cooperative robots can 

handle multiple objects simultaneously while performing assembly tasks, lengthening the 

procedure and removing the requirement for a specific environment. 

As for the autonomous actions of the robot, several control strategies specifically 

determine the movement of the object. Robotic arms perform independent actions that alter 

the trajectory of the object into the trajectories of each of their effectors. Hybrid control 

schemes for the position, force and coordination of multiple robotic arms have also been 

developed. The use of forcefully coordinated multiple robotic arms has been suggested in 

the literature (Hayati, 1986). For a multi-robot system performing assembly tasks, the 

coordinated law of command also includes internal and external movement control (Hsu, 

1989). 

Many adaptive control schemes for coordinated arms have not taken into account the 

effects of uncertainties in dynamic models (Hu & Goldenberg,1989; Walker et al, 1989). 

The majority of the proposed methods may have problems with their ability to control 

processes if the effects of perturbation and uncertainty are not taken into account. These are 

the problems with most of the controllability of the proposed methods. Recently, 

manipulator control has been carried out using robust adaptive and variable structure control 

systems that are built to overcome uncertainty in the presence of disturbances. Perturbation 

has recently been used for manipulator control (Azadi et al., 2005), and it can also be used 

for the hands of cooperative robots. 

The use of artificial intelligence in industrial robotics has increased over the past few 

decades but closed robotic systems have not incorporated ANFIS much outside of Bahani et 

al. (2022) and Han et al. (2023)'s work on the kinematics modeling of the ambidextrous arm. 

In particular, the ANFIS is used in this work to develop a multiple intelligent robot engine 

driver that can control a complex non-linear system made up of two flexible jointed 

manipulators handling a single object. The functions it must perform include trajectory 

tracking, enhancing grip force, eradicating vibratory behavior, and disturbance rejection. As 

the purpose of this work lies at the intersection of the fields of robotics and control, we have 

chosen the following organisational structure for it. The method proposed in this article 

allow us to create computer-assisted robots as shown in Figure 1 and instead of relying on 

non-linear algebraic equations for control we can use artificial intelligence algorithms for 

control. 

 

 

 

 

 

 
 
 
 
 
 

 

  

Fig. 1. Computer-controller manipulator robot 
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2. PROBLEM MODELING  

2.1. Preliminary 

To create an overall system dynamic model, imagine a body that is controlled by two 

robots, to which a frame of non-inertial coordinates O  with the origin at the mass center of 

the object is attached, to mathematically describe the object's motion (Figure 2). 

 

 

Fig. 2. A three-DOF modeling of two cooperative robots 

2.2. Assumptions  

The following presumptions are made (Kawazaki et al., 2003) to help with the dynamic 

formulation (Ivanov et al, 2020). 

A1: Each robot arm has a unique number of axes since none of the robot arms are 

redundant. 

A2: The desired position of the object, the desired velocity and the desired manipulative 

force are time-determined and limited; 

A3: To prevent relative motion between the object and the end effector, which could 

produce an arbitrary force and moment at the point of contact, all robot end effectors are 

rigidly linked to the shared object. 

The control goal is to propose an ANFIS robot engine driver for each manipulator so that 

all signals of the manipulator's global cooperative system remain uniformly bound, the 

object moves along a desired position and orientation trajectory, and internal forces and 

torques reach the desired values.  
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3. DYNAMICS MODEL OF THE COMPLETE SYSTEMS 

3.1. Dynamics of the object 

An object's motion is represented by the shift in the coordinate frame's position with 

respect to the inertial frame. If the "clamped-clamped" model is used, the center of mass of 

the rigid body can be determined using the vectors 0,1r and 0,2r  in the object frame. 

We may specify: 
T

T T
i i iX P  

     
1,  2i 

            
(1)

 

Represents the pose of the (i =1, 2) end effector on the ith robot. Pi is a (3×1) vector that 

is given by (Azadi et al., 2005): 

0 0, 0,( )i b iP P R r    1,  2i              (2) 

Where P0 denotes the object's mass center's position vector, 0, ( )bR  denotes the body 

frame's rotation matrix with respect to the inertial frame, and 0,ir  denotes the end-effector i's 

position vector in the body frame. The ith end-orientation effector's vector, (3 1)i  , is 

provided by: 

 

0,i i       1,  2i               (3) 

 
Where the orientation of the object frame (O-xyz) with respect to the inertial frame is 

denoted by 0,i  and   is an orientation vector corresponding to the initial configuration of 

the end effector i. 

Combining Eqns. (2) and (3), we get the following result by setting 

 0 0

T
T Tx P  

 
as the object's position/orientation vector: 

0, 0,

0
0,

( )b b

i
i

R r
X x





 
   

  
 1,  2i             (4) 

By dividing Equation (4), we obtain: 

0
0 0, ( )

0

b i
i

P R r
X





  
    
      

  1,  2i            (5) 

Equation (5) can be rewritten as follows: 

0 0( ).
iiX R x    1,  2i              (6) 

where: 

3 3 0,
0

3 3 3 3

( , )
( )

0i

i iI A r
R

I






 

 
  
 

 1,  2i           (7) 
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where 3 3I   and 3 30   are, respectively, the identity and zero matrices for the third dimension, 

and: 

0,
0, 0,

( )
( , )

b
i i i

dR
A r r

dt


    1,  2i             (8) 

Let 1( )
iAJ q be the Jacobian matrix for robot i and let iq  be the vector of joint displace-

ments. We get the following equation by defining 1 2 0

T
T T T

iX q q x 
 

as the combined 

coordinate vector: 

( ) 0J x x                     (9) 

where J(x) is the full system's Jacobian matrix, denoted by: 

11

1 1

01 6

2 06

( )( ) 0
( )

( ) ( )0

A n

An

RJ q
J x

J q R









 
  

  

1,  2i           (10) 

where n denotes a single robot's degrees of freedom. 

3.2. Manipulator dynamics 

The dynamic equations of the robot motion with respect to joint coordinates are 

obtained using Newton-Euler dynamics (Azadi et al., 2005): 

( ) ( , ) ( )
i

T
i i i i i i i i i i A iH q q B q q q G q J F   

 
1,  2i 

      
(11)

 

where ( )i iG q  is the vector of gravitational terms, ( )i iH q is the robot inertia matrix, ( , )i i iB q q

is the matrix of Coriolis and centrifugal effects, and iF  is the generalized joint torque/force. 

Where iF  denotes the force/moment vector that the payload, as measured at the origin of 

the end-effector frame and expressed in the base frame of the robot i exerts on end-effector 

i. 

Equation (11) can be rewritten as to. 

1( )( )i i i i iq H q       1,  2i              (12) 

where i   represents the torque contribution that varies with joint positions and velocities: 

( , ) ( )
i

T
i i i i i i i A iB q q q G q J F      1,  2i            (13) 

3.3. Common-object dynamic 

Lagrange's method is based on the calculation of the kinetic energy of each arm 

constituting the robot, this kinetic energy cE  is given by the relation: 
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1

2

T T
c WE mv v I   

 
               (14) 

where WI is symmetric and represents the inertia tensor relative to the center of mass of 

the object when expressed in the inertial frame, and m  is the object's mass, v is the linear 

velocity of the center of mass,   and is the body's angular velocity. The object's potential 

energy is : 

0U mgy                     (15) 

where 0y  is the center of mass's z coordinates in the inertia frame and 
g

 is the 

gravitational constant. The object's Lagrangian is as follows: 

0

1

2

T T
c WL E U mv v I mgy      

 
          (16) 

The power supplied by external forces and torques must be equal to the power 

supplied by the generalized forces in the object's mass, so: 

1 1 2 2 0
T T Tf V f V F V                  (17) 

where 1f  and 2f  are the forces and moments that the object applied to each the robots 1, 

2 measured at the end effectors frame's origin and expressed in these frames, and 1V , 2V  , 

and 0V  stand for the end effectors 1, 2, and object's respective velocity vectors. In what 

way ,R EX and q  relate by: 

,R E fX J q   where 1
f fr AJ T J           (18)  

 

and frT is an identity matrix for RPY angles. 

When we consider the relation (18) and replace equation (6) in equation (17), we get: 

1 21 1 2 2 0( )T T T
fr O fr O frf T R f T R x F T x             (19) 

when we solve Equation (20) for F, we get: 

2

0

1
i i

T T T
fr O fr i

i

F T R T f



 
   

 
               (20) 

We can obtain the dynamics of an object in the inertia frame by substituting Equations. 

(16) and (20) in the Lagrange formulation (Azizian, 2001; Azadi et al., 2005): 

0( ) ( , ) R
O O O O O O O Wi rbi iH x x B x x x g G R F

 
    

 
 1,  2i   

       

(21) 

Where: 

,( )
O O

T
O O fr O W frH x T M T                 (22) 
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6 6

,

6 6

0

0

i

i

i

R
b

R rb R
b

R
R

R





 
 
 
 

                 (26) 

where , iR rbR represents the rotation matrix of base frame i  with respect to the inertial 

frame. and O  stand i for object and ith robot, respectively, in the definitions of iF  and frT

that were just given. 

3.4. Complete systems dynamic  

Two robots each holding a rigid payload make up the entire system, and their dynamic 

equation of motion is: 

( ) ( , ) ( ) ( )T
fD x x C x x x G x u J x f               (27) 

1 3 3 3 3

3 3 2 3 3

3 3 3 3

( ) 0 0

( ) 0 ( ) 0

0 0 ( )

i

i

O O

H q

D x H q

H x

 

 

 

 
 


 
  

              (28) 

1 1 1 3 3 3 3
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          (29) 

1 1
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G q
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And  
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           (32) 

4. CONTROL OF COOPERATIVE ROBOTS  

4.1. Control cooperative robots 

Intuition in mechanical engineering suggests using an inverse dynamics control of the 

form to cancel nonlinear terms and decouple the dynamics of each link. 

 

( ) ( , ) ( )
i

T
i i i i i i i i i i A iH q q B q q q G q J F    

        
(32)

 

which was used with Equation (11), and considering the regularity of the symmetric 

positive definite matrix ( )i iH q , which verifies following Equation: 

. ( ) .m i i MI H q I  
              

(33)
 

The end result is a set of n coupled linear systems, where m et M denotes the exact 

minimum (maximum) strictly positive value of ( )H q for each configuration. 

4.2. Intelligent control of cooperative robots 

Due to the benefits that these tools provide, particularly for nonlinear systems, the control 

based on artificial intelligence represents a very large and active research field. It is based 

on the exploitation of these capacities of learning, approximation, and optimization that 

characterize these tools, among which we quote the artificial neural networks, the fuzzy 

logic, and the genetic algorithms. 

The drivers of each manipulator robot receive instructions from the MANFIS controller 

as shown in the following figure 3: 
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Fig. 3. Intelligent robot robot engine driver block diagram for robot (i) 

5. ESTIMATION AND OPTIMIZATION OF THE EFFORT DISTRIBUTION  

ON THE OBJECT 

The formulation and solution of the contact distribution is a problem which requires 

consideration. The following constraints must be taken into account in the formulation and 

solution of the contact distribution problem: 

 Preventing the manipulated object from sliding while being held by a cooperative 

multi-robot system; 

 Gradually varying the contact forces when the robots come into contact with the 

manipulated object to ensure a permanent contact when the object is held by the end 

effectors of the various robots. Most studies substitute an inequality for the friction 

cone in order to avoid the non-linearity of this equation (Mahfoudi et al., 2003). 
 
 

 

Fig. 4. The cone's inscribed pyramid of friction 

 

'y zf f                 (33) 

Inscribed pyramid 

Friction cone 
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with  

2
'

2
                 (34) 

'  represents is for the inscribed pyramid and  . 

The phenomenon of sliding on the contact surface when the object is held by the end 

effectors of the cooperative robots, can be reduced by maximizing the ratio of forces acting 

on the robots' tangential and normal components. By defining the overall ratio as the ratio 

between the normal and tangential force acting on the manipulated object, the authors (Klein 

& Kittivatcharapong, 1990) discovered a relationship connecting the forces on the robots 

and allowing the transformation of part of the friction problem from the nonlinear to the 

linear case. 

The benefit of this approach is that some forces will satisfy the same global ratio of forces, 

while the remaining forces must satisfy the constraint inequalities determined by the 

previous equation. For those belonging to the second type, for instance, we get (Mahfoudi 

et al., 2003): 

i ix xz zf k f                 (35) 

  

 

and  

i ix zf f                (36) 

With x
xz

z

F
k

F
  is the overall ratio of the forces that were applied to the object being moved 

in accordance with the direction and 

2 2
xzk   

               
(37)

 

6. TRAJECTORY AND FORCE GENERATION STRATEGY (MANFIS) 

Fuzzy logic and neural networks are combined in the adaptive network fuzzy inference 

system (ANFIS), created by Jang in the 1990s (Jang, 1989), to create a hybrid intelligent 

system that automatically improves the capacity for learning and adaptation (Jha et al., 

2015). 

Researchers have used hybrid systems for modeling and forecasting across a range of te

chnological fields (Esen et al., 2008).  

The main objective of these adaptive techniques is to provide the modelling process with 

a fuzzy way of acquiring knowledge. Figure 5 depicts the five layers that make up the ANFIS 

structure.We will use a system with inputs (x1,, xn) and one output (y) to make things easi

er to understand. 
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Fig. 5. The different layers of ANFIS 

Adaptive Neuro Fuzzy Inference System is the full name of the system. It is a hybrid 

approach that makes use of neural network machine learning to create fuzzy logic. In order 

to learn the features or weights of a mathematical function from a given data set, neural 

networks are used. The data set is utilized for feature extraction and learning. As a result,  

a hypothesis is first developed for the parametrized mathematical model, and then the model 

is trained using the data. Since the calculations are less complicated and require less compu-

tational power, Forward Kinematics was used to create the data set in this case. The mem-

bership function of a fuzzy inference system of the Sugeno type is tuned by the neural 

network. 

7. SIMULATION AND RESULTS 

7.1. Simulation  

Matlab/SimMechanic and SolidWorks simulations are used to model the kinematics and 

dynamics of the manipulated object. 

 X and Y axis translations while maintaining a constant force of grip, 

 circular translation of diameter 60 mm, while ensuring a constant gripping force, 

 for the circular translation we vary the desired gripping force in a sinusoidal way and 

we take into account the errors made by the designed MANFIS robot engine driver s. 

The authors discussed how to use a fuzzy robot engine driver to control a system in a way 

that respects the gripping force and enables the robot to follow an imposed trajectory. of the 

manipulated object with 5 kg of mass and his Moments of inertia ZZI = 0.0009744kg.m² . 

The desired handling force is 100 Newton. 

The 3-DOF planar manipulator system for the proposed robot manipulator model (see 

Figure 9). The individual links' lengths are 1L  0.225 m 2L 0.15 m and 3L   0.16 m, as shown 

Figure 6. The dynamic characteristics of each of the robot arms are listed in the Table 1. 
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Tab. 1. The Dynamics Parameters of Robots 

Link  

No. 

Mass  

(kg) 

Moments of inertia 

IZZ (kg∙m²) 

1 0.18724 0.00123677 

2 0.113838 0.000315752 

3 0.148558 0.000322059 
 

 

Fig. 6. The MATLAB/SimMechanic models for the three-DOF robots 

The database from "Workspace" is the basis for the learning system, after solving the 

inverse dynamic of the set of cooperative robots. The Matlab scripts will feed each ANFIS 

robot engine driver whose structure is shown in Figure 7 below. 

 

 

Fig.7. Training of ANFIS structure 

The training of our fuzzy robot engine driver , which will be injected into the inverse 

model in figure 8, uses this database. 
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Fig. 8. Matlab/Simulink diagram of the milling system assembly with MANFIS robot engine driver  

7.2. Results  

We can control our robot by selecting a trajectory and gripping force after training 

the robot engine driver for each joint. We then compare this trajectory with those 

made using the fuzzy robot engine driver in Figures 9, 10, 11, 12, 13, 14, 15, 16, and 

17. 
 

 

Fig. 9. Simulation results translation along the X-Axis in mm 
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Fig. 10. The error committed during the linear trajectory along the X-axis,  

as a function of time in second 

 

Fig. 11.Move along translation trajectory with constant desired handling force,  

as a function of time in second 

 

Fig. 12. Translation along the Y-Axis is the result of simulation 
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Fig. 13. The error committed during the linear trajectory along the Y-axis,  

as a function of time in second. 

 

Fig. 14. Move along translation trajectory with constant desired handling force,  

as a function of time in second 

 

Fig.15.Move along circular trajectory with constant desired handling force 
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Fig. 16.Move along circular trajectory with constant desired handling force,  

as a function of time in second 

 

Fig.17.The common-object handling force error, as a function of time in (0,1*second) 
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Fig. 18. Move along circular trajectory with variable desired handling force,  

as a function of time in second 

7.3. Discussion  

The simulation results demonstrate that even with a drive of no more than 100 

epochs, the MANFIS robot engine driver is capable of reproducing the desired 

trajectories and gripping force. As shown in the figures, this robot engine driver made 

a position error of about 2 mm, which enables the validation of this method. We 

submitted this robot engine driver to the variable handling force as shown in Figure 

16 to assess how it responded to the variation of the handling force for the handling 

force error between 1 and -4 Newton. 
The outcomes demonstrate the effectiveness and precision of using MANFIS to regulate 

the grasping force of two robot manipulators. Even with varying setpoint forces, we were 

able to achieve prediction errors of less than 4%, which is on par with or even superior to 

the outcomes achieved with force control techniques described in the literature. This excellent 

performance is attributable to MANFIS's capacity to simulate in real time the intricate relation-

ships between control inputs and input force outputs. 

Although the results demonstrate the effectiveness and accuracy of using MANFIS to 

control the grasping force of two robot manipulators, it is crucial to critically assess and 

contrast them with other papers. The authors proposed a grasping force control method 

based on MANFIS that trains the control model in real-time using online learning 

techniques. Implementing this strategy is easy. However, other grasping force control 

techniques, including those based on neural networks, predictive control strategies, and 

hybrid force control techniques, have also been researched in the literature. These techniques 

have been used for a number of tasks, such as handling, polishing, and assembly. The 

MANFIS-based approach proposed by the authors has advantages over the previously 
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mentioned approaches. First off, it can speed up design and implementation because it does 

not call for elaborate modeling of the load properties. The MANFIS method is also resilient 

to load changes and capable of real-time disturbance adaptation. Last but not least, the 

strategy proposed by the authors makes use of an online learning algorithm to enable 

continuous updating of the control model, ensuring precision and stability of the force 

control. Furthermore, it does not require the implementation of force sensors on the contact 

between the manipulated object and the tool, which is the case in many previous research 

studies. 

8. CONCLUSION 

In conclusion, the authors of this paper proposed a MANFIS-based method, which proved 

to be accurate and effective, for controlling the gripping force of two 6-DOF robotic mani-

pulators. The authors presented that the method is easy to use, adaptable in real time and can 

handle operational disturbances. With input force errors of less than 4% even when set point 

forces vary, the results show that using MANFIS to control input force significantly 

improves system performance. This demonstrates the versatility of the approach for a variety 

of applications requiring precise grip force control. 

However, it is important to note that presented study has some limitations, such as using 

simulated data to train and test our control model. Therefore, future studies should be 

conducted to confirm the results experimentally and evaluate the applicability of the method 

to other systems. 

To sum up, this study paves the way for further research to improve the grasping force 

control of manipulative robots. The authors believe that their method can be used to solve 

similar problems in the future and contribute to the advancement of industrial robotics. 
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