PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wear-Fatigue Study of Carbon Steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process of conjoined stress cycling and abrasive or erosive wear is encountered in industry. However, very scant attention has been paid till now to this issue. The paper presents two test rigs designed and built to cope with this experimental problem. Tests were carried out on the range of pure iron (Armco), carbon steels namely S235JR, C45, C70U, C80U, C110U and unalloyed cast steels (L40III, L45III and L50III). Tested iron-based alloys differ in chemical composition, microstructure and Brinell hardness ranging from 80HB to 350HB. Stress cycling caused strain hardening of ferrite in hypoeutectoid steels and thus reduced their abrasive wear loss. In the hypereutectoid steel stress cycling impaired integrity of the microstructure thus increasing abrasive wear loss. Alternating stresses enhanced ploughing and cutting micromechanisms of erosion. Tensile stress in the tested cast steel had a stronger effect on wear loss than the prior stress history.
Twórcy
  • Department of Materials Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36 Street, 20-618, Lublin, Poland
  • Department of Materials Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36 Street, 20-618, Lublin, Poland
Bibliografia
  • 1. Eyre T.S. Wear characteristics of metals. Tribology International. 1976;9(5):203–12.
  • 2. Hejwowski T., Weroński A. Studies on the extension of the service life of large industrial fans. Journal of Materials Processing Technology. 1995;54(1):144–8.
  • 3. Łatka L., Szala M., Macek W., Branco R. Mechanical Properties and Sliding Wear Resistance of Suspension Plasma Sprayed YSZ Coatings. Adv Sci Technol Res J. 2020;14(4):307–14.
  • 4. Hejwowski T. Erosive and abrasive wear resistance of overlay coatings. Vacuum. 2008;83(1):166–70.
  • 5. Szala M., Szafran M., Macek W., Marchenko S., Hejwowski T. Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Adv Sci Technol Res J. 2019;13(4):151–161.
  • 6. Singh J., Singh S., Pal Singh J. Investigation on wall thickness reduction of hydropower pipeline underwent to erosion-corrosion process. Engineering Failure Analysis. 2021;127:105504.
  • 7. Szala M., Świetlicki A., Sofińska-Chmiel W. Cavitation erosion of electrostatic spray polyester coatings with different surface finish. Bulletin of the Polish Academy of Sciences: Technical Sciences. 2021;69(4):e137519
  • 8. Verna E., Biagi R., Kazasidis M., Galetto M., Bemporad E., Lupoi R. Modeling of Erosion Response of Cold-Sprayed In718-Ni Composite Coating Using Full Factorial Design. Coatings. 2020;10(4):335.
  • 9. Levy A.V. The platelet mechanism of erosion of ductile metals. Wear. 1986;108(1):1–21.
  • 10. Kleis I., Kulu P. Solid Particle Erosion: Occurrence, Prediction and Control. London: SpringerVerlag; 2008.
  • 11. Sundararajan G. The solid particle erosion of metallic materials: The rationalization of the influence of material variables. Wear. 1995;186–187:129–44.
  • 12. Stachowiak G., Batchelor A.W. Engineering Tribology. 4 edition. Butterworth-Heinemann; 2016;884.
  • 13. Wojtacha A., Kciuk M., Opiela M. Effect of Heat Treatment Conditions on Corrosion Resistance of 0.28C–1.4Mn–0.3Si–0.26Cr Steel with Nb, Ti, and V Microadditions. Materials. 2021;14(12):3254.
  • 14. Walczak M., Pieniak D., Niewczas A.M. Effect of recasting on the useful properties CoCrMoW alloy. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2014;16(2):330–336.
  • 15. Tomków J., Czupryński A., Fydrych D. The Abrasive Wear Resistance of Coatings Manufactured on High-Strength Low-Alloy (HSLA) Offshore Steel in Wet Welding Conditions. Coatings. 2020;10(3):219.
  • 16. Łatka L., Michalak M., Szala M., Walczak M., Sokołowski P., Ambroziak A. Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings. Surface and Coatings Technology. 2021;410:126979.
  • 17. Czupryński A. Flame Spraying of Aluminum Coatings Reinforced with Particles of Carbonaceous Materials as an Alternative for Laser Cladding Technologies. Materials. 2019;12(21):3467.
  • 18. Rajahram S.S., Harvey T.J., Walker J.C., Wang S.C., Wood R.J.K. Investigation of erosion–corrosion mechanisms of UNS S31603 using FIB and TEM. Tribology International. 2012;1(46):161–73.
  • 19. Stack M.M., Pungwiwat N. Erosion–corrosion mapping of Fe in aqueous slurries: some views on a new rationale for defining the erosion–corrosion interaction. Wear. 2004;256(5):565–76.
  • 20. Hejwowski T., Gała Z., Drzeniek H. Erosive and corrosive wear resistance of arc sprayed coatings on pipes of superheaters of the third stage of a boiler of a heat and power generating plant. Welding Technology Review. 2009;81(9):81–5.
  • 21. Deng J., Liu L., Ding M. Effect of residual stresses on the erosion wear of laminated ceramic nozzles. Materials Characterization. 2008;59(1):1–8.
  • 22. Dancer C.E.J., Yahya N.A., Berndt T., Todd R.I., de Portu G. Effect of residual compressive surface stress on severe wear of alumina–silicon carbide two-layered composites. Tribology International. 2014;74:87–92.
  • 23. Vierneusel B., Benker L., Tremmel S., Göken M., Merle B. Isolating the effect of residual stresses on coating wear by a mechanical stress relaxation technique. Thin Solid Films. 2017;638:159–166.
  • 24. Spuzic S., Strafford K.N., Subramanian C., Green L. Influence of stress state on abrasive wear of steels. Wear. 1995;184(1):83–86.
  • 25. Von der Ohe C.B., Johnsen R., Espallargas N. A multi-degradation test rig for studying the synergy effects of tribocorrosion interacting with 4-point static and cyclic bending. Wear. 2011;271(11):2978–2990.
  • 26. Weroński A., Hejwowski T. Effect of stress on abrasive and erosive wear of steels and sprayed coatings. Vacuum. 2008;83(1):229–233.
  • 27. Ruff A.W., Ives L.K. Measurement of solid particle velocity in erosive wear. Wear. 1975;35(1):195–9.
  • 28. ISO 4287:1997. Geometrical Product Specifications (GPS) Surface texture: Profile method Terms, definitions and surface texture parameters. Geneva, Switzerland: International Organization for Standardization.
  • 29. Subramanya Sarma V., Padmanabhan K.A. Low cycle fatigue behaviour of a medium carbon microalloyed steel. International Journal of Fatigue. 1997;19(2):135–40.
  • 30. De Lacerda J.C., Martins G.D., Signoretti V.T., Teixeira R.L.P. Evolution of the surface roughness of a low carbon steel subjected to fatigue. International Journal of Fatigue. 2017;102:143–148.
  • 31. Lukáš P., Kunz L. Specific features of high-cycle and ultra-high-cycle fatigue. Fatigue & Fracture of Engineering Materials & Structures. 2002;25(8– 9):747–53.
  • 32. Adamczyk-Cieślak B., Koralnik M., Kuziak R., Brynk T., Zygmunt T., Mizera J. Low-cycle fatigue behaviour and microstructural evolution of pearlitic and bainitic steels. Materials Science and Engineering: A. 2019;747:144–53.
  • 33. Zhao Y., Tan Y., Ji X., Xiang Z., He Y., Xiang S. In situ study of cementite deformation and its fracture mechanism in pearlitic steels. Materials Science and Engineering A, Structural Materials: Properties, Microstructure and Processing. 2018;731:93–101.
  • 34. Nahvi S.M., Shipway P.H., McCartney D.G. Particle motion and modes of wear in the dry sand–rubber wheel abrasion test. Wear. 2009;267(11):2083–2091.
  • 35. Das Bakshi S., Shipway P.H., Bhadeshia H.K.D.H. Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite. Wear. 2013;308(1):46–53.
  • 36. Pereira J.I., Tressia G., Machado P.C., Franco L.A., Sinatora A. Scratch test of pearlitic steels: Influence of normal load and number of passes on the sub-superficial layer formation. Tribology International. 2018;128:337–348.
  • 37. Pereira J.I., Tressia G., Machado P.C., Sinatora A., Souza R.M. Multi-pass scratch test on pearlitic steel: Phase identification and crystallographic orientation analysis of the sub-surface layers. Wear. 2021;472–473:203625.
  • 38. Kocanda S. Fatigue Failure of Metals. Alphen aan den Rijn: Springer Netherlands; 1978. (Fatigue and Fracture).
  • 39. McCabe L.P, Sargent A.G., Conrad H. Effect of microstructure on the erosion of steel by solid particles. Wear. 1985;105(3):257–277.
  • 40. Modi O.P., Mondal D.P., Prasad B.K., Singh M., Khaira H.K. Abrasive wear behaviour of a high carbon steel: effects of microstructure and experimental parameters and correlation with mechanical properties. Materials Science and Engineering: A. 2003;343(1):235–42.
  • 41. Okonkwo P.C. Influence Of Particle Velocities And Impact Angles On The Erosion Mechanisms Of AISI 1018 Steel. AML. 2015;6(7):653–9.
  • 42. Islam M.D.A., Alam T., Farhat Z.N., Mohamed A., Alfantazi A. Effect of microstructure on the erosion behavior of carbon steel. Wear. 2015;332– 333:1080–9.
  • 43. Javaheri V., Porter D., Kuokkala V.T. Slurry erosion of steel – Review of tests, mechanisms and materials. Wear. 2018;408–409:248–73.
  • 44. Ye D., Tong X., Yao L., Yin X. Fatigue hardening/ softening behaviour investigated through Vickers microhardness measurement during highcycle fatigue. Materials Chemistry and Physics. 1998;56(3):199–204.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-341e2ab6-75cb-4449-9394-b8aa71acd584
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.