PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tetragonal or hexagonal symmetry in modeling of failure criteria for transversely isotropic materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Present work deals with modeling of failure criteria for transversely isotropic materials. Analysis comprises two classes of symmetry: Tsai-Wu tetragonal and new Tsai-Wu based hexagonal. Detail analysis of both classes of symmetry with respect to their advantages as well as limitations is presented. Finally, simple comparison of differences between limit curves corresponding to cross sections by planes of transverse isotropy, orthotropy and shear plane is done.
Rocznik
Strony
125--128
Opis fizyczny
Bibliogr. 13 poz., tab., wykr.
Twórcy
  • Institute of Applied Mechanics, Department Mechanical Engineering, Cracow University of Technology, 31-864 Kraków al. Jana Pawła II 37, Poland
autor
  • Institute of Applied Mechanics, Department Mechanical Engineering, Cracow University of Technology, 31-864 Kraków al. Jana Pawła II 37, Poland
Bibliografia
  • 1. Cazacu O., Barlat F. (2004), A criterion for description of anisotropy and yield differential effects in pressure-insensitive materials, International Journal of Plasticity, 20, 2027-2045.
  • 2. Chen W.F., Han D.J. (1995), Plasticity for Structural Engineeres, Springer Verlag, Berlin-Heidelberg.
  • 3. Ganczarski A., Skrzypek J. (2013), Mechanics of novel materials, Wydawnictwo Politechniki Krakowskiej (in Polish).
  • 4. Ganczarski A., Skrzypek J. (2014), Constraints on the applicability range of Hill's criterion: strong orthotropy or transverse isotropy, Acta Mechanica, 225, 2563−2582.
  • 5. Goldenblat I. I. Kopnov, V. A. (1966): A generalized theory of plastic flow of anisotropic metals, Stroitielnaya Mekhanika, 307-319, (in Russian).
  • 6. Hill R. (1948), A theory of the yielding and plastic flow of anisotropic metals, Proceedings of Royal Society, London, A193, 281−297.
  • 7. Hosford W. F., Backofen W. A. (1964), Strength and plasticity of textured metals, in W. A. Backhofen, J. Burke, L. Coffin, N. Reed and V. Weisse (eds), Fundamentals of deformation processing, Syracuse University Press, 259-298.
  • 8. Khan A. S., Kazmi R., Farrokh B. (2007), Multiaxial and nonproportional loading responses, anisotropy and modeling of Ti-6Al-4V titanium alloy over wide ranges of strain rates and temperatures, International Journal of Plasticity, 23, 931-950.
  • 9. Murakami S. (2012), Continuum Damage Mechanics, Springer Verlag, Berlin.
  • 10. Ottosen N. S., Ristinmaa M. (2005), The mechanics of constitutive modeling. Elsevier, Amsterdam.
  • 11. Ralson T.D. (1997), Yield and plastic deformation of ice crushing failure, ICSLAIDJEX Symposium on Sea Ice-Processes and Models, Seattle, Washington.
  • 12. Sayir M. (1970), On yield condition in theory of plasticity, Ingenieurarchiv, 39, 414-432 (in German).
  • 13. Tsai S. T., Wu E. M. (1971), A general theory of strength for anisotropic materials, Journal of Composite Materials, 5, 58-80. The work was supported by National Science Centre Poland
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-341dcab6-8ad8-4873-a612-3fb39c536209
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.