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Abstract: Present work deals with modeling of failure criteria for transversely isotropic materials. Analysis comprises two classes of sym-
metry: Tsai-Wu tetragonal and new Tsai-Wu based hexagonal. Detail analysis of both classes of symmetry with respect to their ad-
vantages as well as limitations is presented. Finally, simple comparison of differences between limit curves corresponding to cross sec-
tions by planes of transverse isotropy, orthotropy and shear plane is done. 
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1. INTRODUCTION 

Formulation of the initial yield or failure criteria for modern ma-
terials has to consider material anisotropy, tension-compression 
asymmetry or hydrostatic pressure sensitivity. In general, there 
exist two competitive but complementary schools to capture the 
above behaviours. The first explicit approach is based on a direct 
concept of common invariants of stress and anisotropy tensors 
(Sayir, 1970; Goldenblat and Kopnov, 1966; Tsai and Wu, 1971; 
Murakami, 2012; etc.) The second implicit approach is based 
on a direct extension of the isotropic-type yield/failure criteria 
to capture anisotropic behaviour as well as strength differential 
effect and pressure sensitivity by the use of linear transformation 
tensors for single stress invariants (Khan et al., 2007; Cazacu and 
Barlat, 2004 and others). Although the common invariants-based 
formulation is more mathematically rigorous, but complicated by 
the use of the second-, fourth-rank structural tensors, a direct 
extension of classical isotropic criteria to anisotropy is very effi-
cient and broadly examined (Ganczarski and Skrzypek, 2014). 

Basic result of the present paper is to propose the new ortho-
tropic criterion of failure initiation, being the extended Tsai-Wu 
type equation. This new criterion is capable of capturing ortho-
tropic limit surface description, without ellipticity loss even 
for arbitrarily high orthotropy degree. This is by contrast to the 
classical Tsai-Wu (1971) criterion (eg. Ottosen and Ristinmaa, 
2005), where for high orthotropy degree inadmissible degenera-
tion of the limit surface may occur. This enhanced Tsai-Wu's type 
limit surface is represented by the elliptic paraboloid, the axis 
of which is different from hydrostatic axis in the space of principal 
stresses, hence the criterion no longer satisfies the property 
of deviatoricity. 

The other important feature of the proposed criterion is con-
cerned with the particular case of transversely isotropic hexagonal 
symmetry, for which it is possible to achieve coincidence with the 
same proportion of isotropic Huber-von Mises-Hencky condition 
in the transverse isotropy plane, which may occur beneficial when 
compared to the deviatoric Tsai-Wu formulation for which above 
reducibility does not hold. 

2. TRANSVERSELY ISOTROPIC TSAI-WU FAILURE 
CRITERION 

In a general case of brittle materials that exhibit anisotropy 
(e.g. concrete, ceramic materials, rocks, composite materials, 
etc.) and tension-compression asymmetry, a transversely isotropic 
Tsai-Wu criterion of initial failure  (Tsai and Wu, 1971) is applica-
ble:  

𝐹[(𝜎𝑦 − 𝜎𝑧)2 + (𝜎𝑧 − 𝜎𝑥)2] + 𝐻(𝜎𝑥 − 𝜎𝑦)2 + 2𝐿𝜏𝑥𝑦
2

+2𝑀(𝜏𝑧𝑥
2 + 𝜏𝑧𝑦

2 ) + 𝑃(𝜎𝑥 + 𝜎𝑦) + 𝑄𝜎𝑧 = 1
 (1) 

Eq. (1) contains only 5 independent material coefficients refer-

ring to appropriate tensile and compressive strengths ktx, kcx, 
ktz, kcz and shear strength kzx, hence, in order to calibrate it the 
following tests must be performed: 

 𝜎𝑥 = 𝑘𝑡𝑥     ⟶ (𝐹 + 𝐻)𝑘𝑡𝑥
2 + 𝑃𝑘𝑡𝑥 = 1 

 𝜎𝑥 = −𝑘𝑐𝑥 ⟶ (𝐹 + 𝐻)𝑘𝑐𝑥
2 − 𝑃𝑘𝑐𝑥 = 1 

 𝜎𝑧 = 𝑘𝑡𝑧     ⟶ 2𝐹𝑘𝑡𝑧
2 + 𝑄𝑘𝑡𝑧 = 1        (2) 

 𝜎𝑧 = −𝑘𝑐𝑧  ⟶ 2𝐹𝑘𝑐𝑥
2 − 𝑄𝑘𝑐𝑧 = 1 

 𝜏𝑧𝑥 = 𝑘𝑧𝑥    ⟶ 2𝑀𝑘𝑧𝑥
2 = 1 

Solution of Eqs. (2) with respect to F, H, M, P and Q takes the 
form:  

𝐹 =
1

2𝑘𝑡𝑧𝑘𝑐𝑧
𝐻 =

1

𝑘𝑡𝑥𝑘𝑐𝑥
−

1

2𝑘𝑡𝑧𝑘𝑐𝑧
𝑀 =

1

2𝑘𝑧𝑥
2

𝑃 =
1

𝑘𝑡𝑥
−

1

𝑘𝑐𝑥
𝑄 =

1

𝑘𝑡𝑧
−

1

𝑘𝑐𝑧

       (3) 

Magnitude of material coefficient 𝐿, referring to shear strength 
in plane of transverse isotropy, is not independent and can be 
calculated from the following known relation (see Chen and Han, 
1995 and Ganczarski and Skrzypek, 2013): 

2𝐿 = 2(𝐹 + 2𝐻) =
4

𝑘𝑡𝑥𝑘𝑐𝑥
−

1

𝑘𝑡𝑧𝑘𝑐𝑧
 (4) 

Hence, after substitution of Eqs. (3)–(4) to Eq. (1) one can get 



Artur Ganczarski, Michał Adamski 
Tetragonal or Hexagonal Symmetry in Modeling of Yield Criteria for Transversely Isotropic Materials 

126 

final form of the transversely isotropic Tsai-Wu criterion: 

𝜎𝑥
2+𝜎𝑦

2

𝑘𝑡𝑥𝑘𝑐𝑥
+

𝜎𝑧
2

𝑘𝑡𝑧𝑘𝑐𝑧
− (

2

𝑘𝑡𝑥𝑘𝑐𝑥
−

1

𝑘𝑡𝑧𝑘𝑐𝑧
)𝜎𝑥𝜎𝑦 −

𝜎𝑦𝜎𝑧+𝜎𝑥𝜎𝑧

𝑘𝑡𝑧𝑘𝑐𝑧

+(
4

𝑘𝑡𝑥𝑘𝑐𝑥
−

1

𝑘𝑡𝑧𝑘𝑐𝑧
)𝜏𝑥𝑦

2 +
𝜏𝑦𝑧

2 +𝜏𝑧𝑥
2

𝑘𝑧𝑥
2

+(
1

𝑘𝑡𝑥
−

1

𝑘𝑐𝑥
)(𝜎𝑥+𝜎𝑦) + (

1

𝑘𝑡𝑧
−

1

𝑘𝑐𝑧
)𝜎𝑧 = 1

 (5) 

It is obvious that material coefficients in plane of transverse 

isotropy that precede terms σxσy and τxy are not fully independ-

ent since they contain not only in-plane tensile and compressive 

strengths ktx, kcx but also out-of-transverse isotropy plane tensile 

and compressive strengths ktz, kcz. Consequently, Eq. (5) can be 
classified as the tetragonal transversely isotropic Tsai-Wu criterion 
of initial failure.  

3. CONVEXITY LOSS IN CASE OF HIGH ORTHOTROPY 

Applicability range of Tsai-Wu transversely isotropic criterion 
(5) to properly describe initiation of failure in some engineering 
materials that exhibit high orthotropy degree, is bounded by 
a possible elliptic form loss of the limit surface. In other words, 
a physically inadmissible degeneration of the single convex 
and simply connected elliptic limit surface into two concave hy-
perbolas surfaces occurs. The following inequality bounds the 
range of applicability for Hill's criterion (see Ottosen and Ristin-
maa, 2005; Ganczarski and Skrzypek, 2013): 

1

𝑘𝑡𝑧𝑘𝑐𝑧
(

4

𝑘𝑡𝑥𝑘𝑐𝑥
−

1

𝑘𝑡𝑧𝑘𝑐𝑧
) > 0  (6) 

Substitution of the dimensionless parameter R =
2(ktzkcz/ktxkcx) − 1 (extension of Hosford and Backofen 
(1964) parameter), leads to the simplified restriction: 

𝑅 > −0.5  (7) 

If the above inequalities (6)–(7) do not hold, elliptic cross sec-
tions of the limit surface degenerate to two hyperbolic branches 
and the loss of convexity occurs. To illustrate this limitation, the 

failure curves in two planes: the transverse isotropy (σx, σy): 

𝜎𝑥
2 −

2𝑅

1+𝑅
𝜎𝑥𝜎𝑦 + 𝜎𝑦

2 + (𝑘𝑐𝑥 − 𝑘𝑡𝑥)(𝜎𝑥+𝜎𝑦) = 𝑘𝑡𝑥𝑘𝑐𝑥

 
 (8) 

and the orthotropy plane (σx, σz): 

𝜎𝑥
2 −

2

1+𝑅
𝜎𝑥𝜎𝑧 +

2

1+𝑅
𝜎𝑧

2 + (𝑘𝑐𝑥 − 𝑘𝑡𝑥)𝜎𝑥

 +𝑘𝑡𝑥𝑘𝑐𝑥(
1

𝑘𝑡𝑧
−

1

𝑘𝑐𝑧
)𝜎𝑧 = 𝑘𝑡𝑥𝑘𝑐𝑥

 (9) 

for various R–values, are sketched in Fig. 1a, b respectively. It is 

observed that when R, starting from R = 3, approaches the limit 

R = −0.5, the curves change from closed ellipses to two parallel 
lines in transverse isotropy plane or parabola in orthotropy plane, 

whereas for R < −0.5, concave hyperbolas appear. In general 
case of strong orthotropy, when the convexity condition (6) does 
not hold, the Tsai-Wu criterion (5) becomes useless. This effect is 
decribed in details for the case of Hill’s (1948) orthotropic yield 
criterion (see Ganczarski and Skrzypek, 2013) from which Tsai-
Wu’s criterion obviously inherits all inconvenient features since 
the structure of quadratic terms of both conditions is analogous.  

 
Fig. 1. Degeneration of the Tsai-Wu limit surface with the magnitude  
            of the generalized Hosford and Backhofen parameter 𝑅: 

            a) transverse isotropy plane, b) orthotropy plane 

4. MODIFIED TSAI–WU BASED HEXAGONAL FAILURE 
CRITERION 

Except the tetragonal transversely isotropic Tsai-Wu criterion 
Eq. (5) one can introduce hexagonally isotropic Tsai-Wu failure 
criterion: 

𝜎𝑥
2−𝜎𝑥𝜎𝑦+𝜎𝑦

2

𝑘𝑡𝑥𝑘𝑐𝑥
+

𝜎𝑧
2

𝑘𝑡𝑧𝑘𝑐𝑧
−

𝜎𝑦𝜎𝑧+𝜎𝑥𝜎𝑧

𝑘𝑡𝑧𝑘𝑐𝑧
+

3

𝑘𝑡𝑥𝑘𝑐𝑥
𝜏𝑥𝑦

2 +

𝜏𝑦𝑧
2 +𝜏𝑧𝑥

2

𝑘𝑧𝑥
2 + (

1

𝑘𝑡𝑥
−

1

𝑘𝑐𝑥
)(𝜎𝑥+𝜎𝑦) + (

1

𝑘𝑡𝑧
−

1

𝑘𝑐𝑧
)𝜎𝑧 = 1

 (10) 

in which coefficients that precede terms σxσy and τxy
2  are always 

positive. These prevent elliptic form of failure curves from degen-
eration and reduce Eq. (10) to the Huber-von Mises-Hencky el-
lipse “shifted” outside the origin of co-ordinate system in case 
of transverse isotropy plane. Since the Huber-von Mises-Hencky 

a 

b 



acta mechanica et automatica, vol.8 no.3 (2014), DOI 10.2478/ama-2014-0022 

127 

criterion exhibits isotropy in hexagonal sense, therefore the Tsai-
Wu failure criterion can also be classified as hexagonal in the 
plane of transverse isotropy. Consequently, condition (10) never 
violates the Drucker stability postulate, which is not guaranteed by 
equation (5). However, the hexagonally isotropic Tsai-Wu failure 
criterion cannot be presented in explicitly deviatoric form (1) which 
means that the axis of appropriate limit surface in the principal 
stress space is not parallel to the hydrostatic axis. 

5. RESULTS 

Both the Tsai-Wu transversely isotropic initial failure criteria: 
tetragonal Eq. (5) and new hexagonal type Eq. (10) are compared 

for columnar ice in plane of transverse isotropy (σx, σy) in Fig. 2, 

in plane of orthotropy (σx, σz) in Fig. 3 and in plane of transverse 

isotropy (σx, τxy) in Fig. 4. The experimental data of columnar 

ice was established by Ralston (1997) in Tab. 1.  

Tab. 1. Experimental data for columnar ice, after Ralson (1997) 

Tensile strength Compressive strength 

ktx 1.01 MPa kcx 7.11 MPa 

ktz 1.21 MPa kcz 13.5 MPa 

Cross sections of the limit surface are ellipses, that exhibit 
strong aspect ratio in case tetragonal symmetry, the centers 
of which are shifted outside the origin of co-ordinate system to-
wards the quarter referring to compressive stresses. In case 
of cross section by plane of transverse isotropy (see Fig. 2) the 
symmetry axis has obviously inclination equal 45° to the axes 
of coordinate system, in other words it overlaps projection 

of hydrostatic axis at the transverse isotropy plane (σx, σy), con-

trary to the cross section by plane of orthotropy (see Fig. 3) the 

main semi-axis of ellipse is inclined by 71.1°.  

 

Fig. 2. Comparison of transversely isotropic Tsai-Wu initial failure criteria   
 of tetragonal and hexagonal types for columnar ice  
 in case of plane of transverse isotropy (𝜎𝑥 , 𝜎𝑦) 

It has to be emphasized that, in case of columnar ice, com-
pressive strength along othotropy axis kcz is over 10 times great-

er than tensile strength ktz, whereas analogous ratio kcx/ktx 
is approximately equal to 7 in case of transverse isotropy plane. 
Moreover, ratio of semi-axes for Tsai-Wu tetragonal ellipse 

in (σx, σy) plane essentially exceeds analogous ratio for Huber-

von Mises-Hencky like ellipse, contrary to the case of Tsai–Wu 
hexagonal ellipse.  

 

Fig. 3. Comparison of transversely isotropic Tsai-Wu initial failure criteria  
            of tetragonal and hexagonal types for columnar ice  
            in case of plane of orthotropy (𝜎𝑥, 𝜎𝑧) 

In case of cross sections of the limit surface in shear plane 
(σx, τxy) both ellipses referring to tetragonal and to hexagonal 

symmetry have comparable aspect ratio along tension-
compression direction mainly resulting from aforementioned 

strength difference ratio kcx/ktx however the criterion (10) per-
forms ellipse slightly broder than the criterion (5). 

 

Fig. 4. Transverse isotropic Tsai-Wu initial failure criteria of tetragonal  
            and hexagonal types for columnar ice  
            in case of plane of transverse isotropy (𝜎𝑥 , 𝜏𝑥𝑦)  

It is also worth to emphasize that although the tetragonal 
transversely isotropic Tsai-Wu failure criterion Eq. (5) and the 
hexagonal transversely isotropic Tsai-Wu failure criterion Eq. (10) 
contain the same number of 5 independent strengths ktx, kcx, 

ktz, kcz and kzx, only criterion (10) is free from convexity loss 
and simultaneously truly transversely isotropic in sense of hexag-
onal class of symmetry. 
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6. CONCLUSIONS 

Both transversely isotropic failure criteria: Tsai-Wu tetragonal 
and Tsai-Wu hexagonal perform paraboloidal surfaces in the 
space of principal stresses. However, the tetragonal criterion 
is represented by elliptic paraboloid which axis is parallel to the 
hydrostatic axis contrary to the hexagonal one, which represents 
elliptic paraboloid which axis is not parallel to the hydrostatic axis. 
Hence, hexagonal Tsai-Wu failure criterion does not satisfy devia-
toric property; this is a consequence of its coincidence with Huber-
von Mises-Hencky like criterion in the plane of transverse isotropy 
as well as a property of saving elliptical nature despite of high 
ratio of orthotropy. Choice of appropriate transversely yield criteri-
on either tetragonal or hexagonal depends on coincidence with 
experimental tests done on real materials, that can be subjected 
to one or other class of symmetry, but also can exhibit properties 
different than aforementioned cases. Key point for proper classifi-
cation of real transversely isotropic material to one of symmetry 
class (tetragonal, hexagonal) is the shape of limit curve belonging 
to the plane of transverse isotropy. 
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