PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Navigating regulatory barriers in green shipping: Policy harmonization, infrastructure challenges, and the path to decarbonization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The maritime shipping sector, responsible for nearly 3% of global greenhouse gas emissions, faces significant regulatory, infrastructural, and economic barriers in its transition toward decarbonization. This study employs a multiple case analysis of the European Union’s emissions trading system, China’s green shipping corridors, and Maersk’s adoption of alternative fuels to examine the challenges of regulatory fragmentation, high costs, and inadequate infrastructure. Findings reveal that policy misalignment, insufficient investment in alternative fuel supply chains, and stakeholder disengagement hinder the industry’s green transition. This study advocates for a globally harmonized regulatory framework, strategic investments in alternative fuel infrastructure, and enhanced stakeholder collaboration. By proposing innovative strategies, such as public-private partnerships and digital compliance mechanisms, this research provides a roadmap for overcoming these barriers and accelerating the adoption of sustainable maritime practices. The insights contribute to global efforts to meet the International Maritime Organization’s 2050 decarbonization targets.
Rocznik
Strony
5--23
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • King Abdulaziz University, Faculty of Maritime Studies Supply Chain Management and Maritime Business Department Jeddah 21589, Saudi Arabia
Bibliografia
  • 1. Abuelenin, A.H.M. (2017) The impact of shortage implementation of the international regulations on maritime safety. Cogent Social Sciences 3 (1), 1335499, doi: 10.1080/ 23311886.2017.1335499.
  • 2. Alamoush, A.S., Dalaklis, D., Ballini, F. & Ölcer, A.I. (2023) Consolidating port decarbonisation implementation: Concept, pathways, barriers, solutions, and opportunities. Sustainability 15 (19), 14185, doi: 10.3390/su151914185.
  • 3. Alofaysan, H., Radulescu, M., Dembińska, I. & Si Mohammed, K. (2024) The effect of digitalization and green technology innovation on energy efficiency in the European Union. Energy Exploration & Exploitation 42(5), pp. 1747– 1762, doi: 10.1177/01445987241253621.
  • 4. Ankathi, S., Lu, Z., Zaimes, G.G., Hawkins, T., Gan, Y. & Wang, M. (2022) Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential. Journal of Industrial Ecology 26 (6), pp. 2045–2056, Portico, doi: org/10.1111/jiec.13262.
  • 5. Atilhan, S., Park, S., El-Halwagi, M.M., Atilhan, M., Moore, M. & Nielsen, R.B. (2021) Green hydrogen as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering 31, 100668, doi: org/10.1016/j. coche.2020.100668.
  • 6. Baertlein, L. (2024) Maersk says ocean shipping’s zeroemissions push needs government support. [Online]. Available from: https://www.reuters.com/business/ environment/maersk-says-ocean-shippings-zero-emissionspush-needs-government-support-2024-08-28/ [Accessed: March 10, 2025].
  • 7. Brzeziński, Ł. & Koliński, A. (2024) Eco-logistics development directions: Future of sustainable freight solutions. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Politechniki Morskiej w Szczecinie 79 (151), pp. 77–92, doi: 10.17402/618.
  • 8. Chen, S., Miao, C. & Zhang, Q. (2024) Understanding the evolution of China’s green shipping policies: Evidence by social network analysis. Journal of Cleaner Production 482, 144204, doi: 10.1016/j.jclepro.2024.144204.
  • 9. Chen, Y.-S. (2024) In response to global climate change goals, exploring the development strategy for decarbonizing the shipping industry in Taiwan. Ocean & Coastal Management 252, 107108, doi: 10.1016/j.ocecoaman.2024.107108.
  • 10. Czerwiński, D., Kiersztyn, A., Przyłucki, S., OniszczukJastrząbek, A. & Czermański, E. (2023) Analysis of passenger ships activity in the oil and gas offshore shipping sector in the North Sea. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 75 (147), pp. 68–78, doi: 10.17402/575.
  • 11. Depczyński, R. (2024) Sustainability modeling in energy and labor intensity of manufacturing processes. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Politechniki Morskiej w Szczecinie 80 (152), pp. 32–45, https://doi.org/10.17402/622.
  • 12. Di Vaio, A., Zaffar, A., Balsalobre-Lorente, D. & Garofalo, A. (2023) Decarbonization technology responsibility to gender equality in the shipping industry: a systematic literature review and new avenues ahead. Journal of Shipping and Trade 8 (1), doi: 10.1186/s41072-023-00140-1.
  • 13. Dihayco-Garciano, M. & Garciano, J.R. (2023) Understanding the impact of the maritime shipping industry to a sustainable economic development. European Journal of Theoretical and Applied Sciences 1 (6), pp. 557–563, doi: 10.59324/ejtas.2023.1(6).56.
  • 14. Dong, J., Zeng, J., Yang, Y. & Wang, H. (2022) A review of law and policy on decarbonization of shipping. Frontiers in Marine Science 9, doi: 10.3389/fmars.2022.1076352.
  • 15. European Commission (2024) How does the EU ETS work? [Online]. Available from: https://climate.ec.europa.eu/ eu-action/eu-emissions-trading-system-eu-ets/about-eu-ets_ en#how-does-the-eu-ets-work [Accessed: March 10, 2025].
  • 16. Fan, L., Xu, Y., Luo, M. & Yin, J. (2021) Modeling the interactions among green shipping policies. Maritime Policy & Management 49 (1), pp. 62–77, doi: 10.1080/03088839. 2021.1872808.
  • 17. Felício, J.A., Rodrigues, R. & Caldeirinha, V. (2021) Green shipping effect on sustainable economy and environmental performance. Sustainability 13 (8), 4256, doi: 10.3390/su13084256.
  • 18. Fleming, S. (2024) UK ports group warns of ‘regulatory drag’ on new green infrastructure. [Online]. Available from: https://www.ft.com/content/ad94f856-a507-4190-b89e0071f13faf86 [Accessed: March 10, 2025].
  • 19. Garcia, B., Foerster, A. & Lin, J. (2020) Net zero for the international shipping sector? An analysis of the implementation and regulatory challenges of the IMO strategy on reduction of GHG emissions. Journal of Environmental Law 33 (1), pp. 85–112, doi: 10.1093/jel/eqaa014.
  • 20. IMO (2018) Initial IMO strategy on the reduction of GHG emissions from ships. Retrieved from https://www.imo.org/ en/MediaCentre/HotTopics/Pages/Reducing-greenhousegas-emissions-from-ships.aspx.
  • 21. IMO (2020) Fourth greenhouse gas study 2020. [Online]. Available from: https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx [Accessed: March 10, 2025].
  • 22. Khan, K., Szopik-Depczyńska, K., Dembińska, I. & Ioppolo, G. (2022) Most relevant sustainability criteria for urban infrastructure projects ‒ AHP analysis for the Gulf States. Sustainability 14 (22), 14717, doi: 10.3390/su142214717.
  • 23. Lee, P.T.-W., Kwon, O.K. & Ruan, X. (2019) Sustainability challenges in maritime transport and logistics industry and its way ahead. Sustainability 11 (5), 1331, doi: 10.3390/ su11051331.
  • 24. Lister, J., Poulsen, R.T. & Ponte, S. (2015) Orchestrating transnational environmental governance in maritime shipping. Global Environmental Change 34, pp. 185–195, doi: 10.1016/j.gloenvcha.2015.06.011.
  • 25. Liu, H., Mao, Z. & Li, X. (2023) Analysis of international shipping emissions reduction policy and China’s participation. Frontiers in Marine Science 10, 1093533, doi: 10.3389/ fmars.2023.1093533
  • 26. Lysenko-Ryba, K. & Woch, M. (2023) Adapting the infrastructure of the Bieszczady region to electromobility. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 75 (147), pp. 49–58, doi: 10.17402/573.
  • 27. Malmborg, F. von (2023) Advocacy coalitions and policy change for decarbonisation of international maritime transport: The case of FuelEU maritime. Maritime Transport Research 4, 100091, doi: 10.1016/j.martra.2023.100091.
  • 28. Mao, X., Zhou, Y., Meng, Z. & Cho, H.J. (2024) Green shipping corridors: Screening first mover candidates for China’s coastal shipping based on energy use and technological feasibility. Report. International Council on Clean Transportation (ICCT). Available from: https://theicct. org/wp-content/uploads/2024/07/ID-182-%E2%80%93- Shipping-corridors_final.pdf.
  • 29. Mata, É., Peñaloza, D., Sandkvist, F. & Nyberg, T. (2021) What is stopping low-carbon buildings? A global review of enablers and barriers. Energy Research & Social Science 82, 102261, doi: 10.1016/j.erss.2021.102261.
  • 30. Mgeladze, M. (2024) The legal regulation hurdles of the blockchain-based contracts for maritime transport. European Journal of Commercial Contract Law 16 (1), pp. 10–24, doi:10.7590/187714624x17132716463892.
  • 31. Mi, J.J., Wang, Y., Zhang, N., Zhang, C. & Ge, J. (2024) A bibliometric analysis of green shipping: research progress and challenges for sustainable maritime transport. Journal of Marine Science and Engineering 12 (10), 1787, doi: 10.3390/jmse12101787.
  • 32. Munim, Z.H. & Saha, R. (2021) Green ports and sustainable shipping in the European context. In: Carpenter, A., Johansson, T.M., Skinner, J.A. (eds) Sustainability in the Maritime Domain. Strategies for Sustainability. Springer, Cham, pp. 81–99, doi: 10.1007/978-3-030-69325-1_4.
  • 33. Pastra, A., Doelle, M. & Johansson, T. (2021) The shipping sector and ports as central actors in the decarbonization effort. Asia-Pacific Journal of Ocean Law and Policy 6 (2), pp. 247–270, doi: 10.1163/24519391-06020005.
  • 34. Reddy, V.J., Hariram, N.P., Maity, R., Ghazali, M.F. & Kumarasamy, S. (2023) Sustainable e-fuels: Green hydrogen, methanol and ammonia for carbon-neutral transportation. World Electric Vehicle Journal 14 (12), 349, doi: 10.3390/wevj14120349.
  • 35. Sahin, A.U. (2024) IMO 2023 revised emission reduction strategy and regulatory challenges of maritime decarbonization. European Journal of Commercial Contract Law 16 (1), pp. 25–33, doi: 10.7590/187714624x17132716463900.
  • 36. Siwiec, D. & Pacana, A. (2024) Model supporting the design and improvement of products in their life cycle considering sustainable development criteria. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Politechniki Morskiej w Szczecinie 79 (151), pp. 5–13, doi: 10.17402/610.
  • 37. Wan, Z., Makhloufi, A., Chen, Y. & Tang, J. (2018) Decarbonizing the international shipping industry: Solutions and policy recommendations. Marine Pollution Bulletin 126, pp. 428–435, Doi: 10.1016/j.marpolbul.2017.11.064.
  • 38. Xing, H., Stuart, C., Spence, S. & Chen, H. (2021) Alternative fuel options for low carbon maritime transportation: Pathways to 2050. Journal of Cleaner Production 297, 126651, doi: 10.1016/j.jclepro.2021.126651.
  • 39. Yildiz, R.O., Koc, E., Der, O. & Aymelek, M. (2024) Unveiling the contemporary research direction and current business management strategies for port decarbonization through a systematic review. Sustainability 16 (24), 10959, doi: 10.3390/su162410959.
  • 40. Yin, R.K. (2018) Case Study Research and Applications: Design and Methods (6th ed.). SAGE Publications.
  • 41. Yin, W., Wu, S., Zhao, X., Shu, C., Xiao, Y., Ye, G., Shi, W. & Feng, X. (2021) Shore power management for green shipping under international river transportation. Maritime Policy & Management 49 (5), pp. 737–754, doi: 10.1080/03 088839.2021.1983219.
  • 42. Zhou, Y., Li, X. & Yuen, K.F. (2023) Sustainable shipping: A critical review for a unified framework and future research agenda. Marine Policy 148, 105478, doi: 10.1016/j. marpol.2023.105478.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-341ce935-fcad-4c11-9478-8de190abe834
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.