Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper two new approaches are developed to calculate the astronomical vessel position (AVP). Basically, determining the AVP is originated from the spherical equal altitude circles (EACs) concept; therefore, based on the Sumner line’s idea, which implies the trial-and-error procedure in assumption, the AVP is determined by using the two proposed approaches. One consists in taking the great circle of spherical geometry to replace the EAC to fix the AVP and the other implements the straight line of the plane geometry to replace the EAC to yield the AVP. To ensure the real AVP, both approaches choose the iteration scheme running in the assumed latitude interval to determine the final AVP. Several benchmark examples are demonstrated to show that the proposed approaches are more accurate and universal as compared with those conventional approaches used in the maritime education or practical operations.
Czasopismo
Rocznik
Tom
Strony
3--11
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Merchant Marine Department, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 20224, TAIWAN
autor
- Department of Civil Engineering, National Taiwan University, Taiwan
autor
- Department of Civil Engineering, National Taiwan University, Taiwan
Bibliografia
- 1. A’Hearn, M. F. and Rossano, G. S.: Two Body Fixes by Calculator, NAVIGATION, Journal of the Institute of Navigation, 24(1), pp. 59-66, 1977.
- 2. Bennett, G. G.: General Conventions and Solutions - Their Use in Celestial Navigation, NAVIGATION, Journal of the Institute of Navigation, 26(4), pp. 275-280, 1979.
- 3. Bowditch, N.: American Practical Navigator, Volume 1, Defense Mapping Agency Hydrographic/Topographic Center, Washington, D.C., 1984.
- 4. Bowditch, N.: The American Practical Navigator, 2002 Bicentennial Edition, National Imagery and Mapping Agency, Bethesda, Maryland, 2002.
- 5. Chen, C. L.: New Computational Approaches for Solving the Great Circle Sailing and Astronomical Vessel Position, Ph.D. Dissertation, Institute of Civil Engineering, National Taiwan University, Taipei , Taiwan, 2003.
- 6. Chen, C. L. and Hsieh, T. H.: Computation Programs of the Astronomical Vessel Position, Journal of Marine Science and Technology, 19(1), pp. 35-42, 2011.
- 7. Chen, C. L., Hsu, T. P., and Chang, J. R.: A Novel Approach to Determine the Astronomical Vessel Position, Journal of Marine Science and Technology, 11(4), pp. 221- 235, 2003.
- 8. Chen, C. L., Hsu, T. P., and Chang, J. R.: A Novel Approach to Great Circle Sailings: The Great Circle Equation, The Journal of Navigation, 57(2), pp. 311-320, 2004.
- 9. Chen, C. L., Liu, P. F. and Gong, W. T.: A Simple Approach to Great Circle Sailing: The COFI Method, The Journal of Navigation, 67(3), pp. 403-418, 2014.
- 10. Chiesa, A. and Chiesa, R.: A Mathematical Method of obtaining an Astronomical Vessel Position, The Journal of Navigation, 43(1), pp. 125-129, 1990.
- 11. Cotter, C. H.: Direct Methods of Sight Reduction: A Historical Review, The Journal of Navigation, 35(2), pp.260-273, 1982.
- 12. Cotter, C. H.: The Complete Nautical Astronomer, Hollis and Cater, London, 1969.
- 13. Cutler, T. J.: Dutton’s Nautical Navigation, Fifteenth Edition, Naval Institute Press, Maryland, 2004.
- 14. De Wit, C.: Some Remarks on Sight Reduction with Matrices, NAVIGATION, Journal of the Institute of Navigation, 26(3), pp. 252-253, 1979.
- 15. Dozier, C. T.: A Simultaneous Two-Star Fix, NAVIGATION, Journal of the Institute of Navigation, 2(4), pp. 91-92, 1949.
- 16. Flynn, R. W.: Computer Sight Reduction Based on Intersection of Equal Altitude Circles, NAVIGATION, Journal of the Institute of Navigation, 19(1), pp. 7-10, 1972.
- 17. Fox, C.: Finding Latitude and Longitude by Calculators, NAVIGATION, Journal of the Institute of Navigation, 22(4), pp. 293-301, 1975.
- 18. Gery, S. W.: The Direct Fix of Latitude and Longitude from Two Observed Altitudes, NAVIGATION, Journal of the Institute of Navigation, 44(1), pp. 15-23, 1997.
- 19. Hsu, T. P., Chen, C. L. and Chang, J. R.: New Computational Methods for Solving Problems of the Astronomical Vessel Position, The Journal of Navigation, 58(2), pp. 315-335, 2005.
- 20. Kotlaric, S.: K-12 Method By Calculator: A Single Program for All Celestial Fixes, Directly or by Position Lines, NAVIGATION, Journal of the Institute of Navigation, 28(1), pp. 44-51, 1981.
- 21. Kotlaric, S.: New Short Method Table (K11) for Direct Finding of a Two Star Fix without Use of Altitude Difference Method, NAVIGATION, Journal of the Institute of Navigation, 18(4), pp. 440-449, 1971.
- 22. Oestmann, G.: Delayed progress in navigation: the introduction of line of position navigation in Germany and Austria, International Journal on Geomathematics, 1(2), pp. 133-143, 2011.
- 23. Ogilvie, R. E.: A New Method of Celestial Navigation, NAVIGATION, Journal of the Institute of Navigation, 24(1), pp. 67-71, 1977.
- 24. Pepperday, M.: The ‘Two-Body Problem’ At Sea, The Journal of Navigation, 45(1), pp. 138-142, 1992.
- 25. Royal Navy: The Admiralty Manual of Navigation: Astro Navigation, Volume 2, 10th Edition, Nautical Institute, London, U. K., 2011.
- 26. Ruiz Gonzalez, A.: Vector Solution for the Intersection of Two Circles of Equal Altitude, The Journal of Navigation, 61(2), pp. 355-365, 2008.
- 27. Spiegel, M. R., Lipschutz, S. and Spellman, D.: Vector analysis and an introduction to tensor analysis, Second Edition, McGraw-Hill, 2009.
- 28. Tsou, M. C.: Genetic Algorithm for Solving Celestial Navigation Fix Problems, Polish Maritime Research, 19(3), pp.53-59, 2012.
- 29. Van Allen, J. A.: An Analytical Solution of the Two Star Sight Problem of Celestial Navigation, NAVIGATION, Journal of the Institute of Navigation, 28(1), pp. 40-43, 1981.
- 30. Watkins, R. and Janiczek, P. M.: Sight Reduction with Matrices, NAVIGATION, Journal of the Institute of Navigation, 25(4), pp. 447-448, 1978.
- 31. Wight, C.: Direct Methods of Latitude and Longitude Determination by Mini-Computer, NAVIGATION, Journal of the Institute of Navigation, 23(2), pp.149-156, 1976.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-341a8953-47f5-4270-937d-8e3f46892879