PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Selected Mechanical Properties in Austempered Ductile Iron with Different Wall Thickness by the Decision Support Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The structure of Austempered Ductile Iron (ADI) is depend of many factors at individual stages of casting production. There is a rich literature documenting research on the relationship between heat treatment and the resulting microstructure of cast alloy. A significant amount of research is conducted towards the use of IT tools for indications production parameters for thin-walled castings, allowing for the selection of selected process parameters in order to obtain the expected properties. At the same time, the selection of these parameters should make it possible to obtain as few defects as possible. The input parameters of the solver is chemical composition Determined by the previous system module. Target wall thickness and HB of the product determined by the user. The method used to implement the solver is the method of Particle Swarm Optimization (PSO). The developed IT tool was used to determine the parameters of heat treatment, which will ensure obtaining the expected value for hardness. In the first stage, the ADI cast iron heat treatment parameters proposed by the expert were used, in the next part of the experiment, the settings proposed by the system were used. Used of the proposed IT tool, it was possible to reduce the number of deficiencies by 3%. The use of the solver in the case of castings with a wall thickness of 25 mm and 41 mm allowed to indication of process parameters allowing to obtain minimum mechanical properties in accordance with the PN-EN 1564:2012 standard. The results obtained by the solver for the selected parameters were verified. The indicated parameters were used to conduct experimental research. The tests obtained as a result of the physical experiment are convergent with the data from the solver.
Rocznik
Strony
137--144
Opis fizyczny
Bibliogr. 29 poz., il., tab., wykr.
Twórcy
  • Lukasiewicz Research Network-Krakow Institute of Technology, Poland
  • AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Poland
  • AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Poland
autor
  • AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Poland
autor
  • Kutno Foundry, Poland
  • AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Poland
  • Lukasiewicz Research Network-Krakow Institute of Technology, Poland
Bibliografia
  • [1] Šabík, V., Futáš, P. & Pribulová, A. (2022). Failure analysis of a clutch wheel for wind turbines with the use of casting process simulation. Engineering Failure Analysis. 135, 106159. DOI:10.1016/J.ENGFAILANAL.2022.106159.
  • [2] Shahane, S., Aluru, N., Ferreira, P., Kapoor, S.G. & Vanka, S.P. (2020). Optimization of solidification in die casting using numerical simulations and machine learning. Journal of Manufacturing Process. 51, 130-141, DOI:10.1016/J.JMAPRO.2020.01.016.
  • [3] Miller, S.W., Finke, D.A., Kupinski, M. & Ligetti, C.B. (2019). WeldANA: welding decision support tool for conceptual design. Journal of Manufacturing Systems. 51, 120-131. DOI:10.1016/J.JMSY.2019.04.007.
  • [4] Del Vecchio, C., Fenu, G., Pellegrino, F.A., Michele, D.F., Quatrale, M., Benincasa, L., Iannuzzi, S., Acernese, A., Correra, P. & Glielmo, L. (2019). Support vector representation machine for superalloy investment casting optimization. Applied Mathematical Modeling. 72, 324-336. DOI:10.1016/J.APM.2019.02.033.
  • [5] Sukhodolov, Y.A. The notion, essence, and peculiarities of industry 4.0 as a sphere of industry. undefined 2018, 169, 3-10. DOI:10.1007/978-3-319-94310-7_1.
  • [6] Kozłowski, J., Sika, R., Górski, F., Ciszak, O. (2019). Modeling of foundry processes in the era of industry 4.0. Advances in lecture notes in mechanical engineering; Pleiades Publishing. 62-71. DOI:10.1007/978-3-319-93587-4_7.
  • [7] Stawowy, A., Duda, J. & Wrona, R. (2016). Applicability of business rules to production management in foundries. Archives of Foundry Engineering. 16(1), 85-88. DOI:10.1515/afe-2016-0008.
  • [8] Mumali, F. (2022). Artificial neural network-based decision support systems in manufacturing processes: a systematic literature review. Computers & Industrial Engineering. 165, 107964. DOI:10.1016/J.CIE.2022.107964.
  • [9] Yang, D.Y., Bambach, M., Cao, J., Duflou, J.R., Groche, P., Kuboki, T., Sterzing, A., Tekkaya, A.E. & Lee, C.W. (2018). Flexibility in metal forming. CIRP Annals. 67(2), 743-765, DOI:10.1016/j.cirp.2018.05.004.
  • [10] Uyan, T., Otto, K., Silva, M.S., Vilaça, P. & Armakan, E. (2023). Industry 4.0 foundry data management and supervised machine learning in low-pressure die casting quality improvement. International Journal of Metalcasting. 17(1), 414-429. DOI:10.1007/S40962-022-00783-Z/TABLES/3.
  • [11] Wadhwa, R.S. (2013). Methodology for internal traceability support in foundry manufacturing. In IFIP Advances in Information and Communication Technology, 9-12 September 2013 (pp. 183-190). Berlin, Heidelberg: Springer.
  • [12] Iqbal, M.F., Javed, M.F., Rauf, M., Azim, I., Ashraf, M., Yang, J., & Liu, Q.-feng (2021). Sustainable utilization of foundry waste: forecasting mechanical properties of foundry sand based concrete using multi-expression programming. Science of the Total Environment. 780(1), 146524. DOI:10.1016/J.SCITOTENV.2021.146524.
  • [13] Lutz, W., Deisenhofer, A.K., Rubel, J., Bennemann, B., Giesemann, J., Poster, K. & Schwartz, B. (2021). Prospective evaluation of a clinical decision support system in psychological therapy. Journal of Consulting and. Clinical Psychology. 90(1), 90-106. DOI:10.1037/CCP0000642.
  • [14] Abdelsadek, Y. & Kacem, I. (2022). Productivity improvement based on a decision support tool for optimization of constrained delivery problem with time windows. Computers & Industrial Engineering. 165, 107876. DOI:10.1016/J.CIE.2021.107876.
  • [15] Stanek K. (2020). Case studies in foundry 4.0. Modern Casting, April. 32-36.
  • [16] Kopper, A.E. & Apelian, D. (2022). Predicting quality of castings via supervised learning method. International Journal of Metalcasting. 16(1), 93-105. https://doi.org/10.1007/s40962-021-00606-7.
  • [17] Gazda, A., Warmuzek, M. & Bitka, A. (2018). Optimization of mechanical properties of complex, two-stage heat treatment of Cu–Ni (Mn, Mo) austempered ductile iron. Journal of Thermal Analysis and Calorimetry. 132, 813-822. https://doi.org/10.1007/s10973-018-7004-6.
  • [18] Jhaveri, K., Lewis, G.M., Sullivan, J.L. & Keoleian, G.A. (2018). Life cycle assessment of thin-wall ductile cast iron for automotive lightweighting applications. Sustainable Materials and Technologies. 15, 1-8, DOI:10.1016/J.SUSMAT.2018.01.002.
  • [19] Almanza, A., Dewald, D., Licavoli, J. & Sanders, P.G. (2021). Effect of cobalt additions on the microstructure and mechanical properties of as-cast thin-wall ductile iron. International Journal of Metalcasting. 15(2), 417-432. https://doi.org/10.1007/s40962-020-00513-3.
  • [20] Sarkar, T. & Sutradhar, G. (2018). Investigation into the microstructure and mechanical properties of thin wall
  • austempered gray cast iron (TWAGI). Transactions of the Indian Institute of Metals. 71, 2133-2143. https://doi.org/10.1007/s12666-018-1345-5.
  • [21] van gen Hassend, F., Ninnemann, L., Töberich, F., Breuckmann, M., Röttger, A., Weber, S. (2022). Study on the austemperability of thin-wall ductile cast iron produced by high-pressure die-casting. Journal of Materials Engineering and Performance. 31, 1405-1418. https://doi.org/10.1007/s11665-021-06252-8.
  • [22] Wang, X., Du, Y., Liu, C., Hu, Z., Li, P., Gao, Z., Guo, H. & Jiang, B. (2022). Relationship among process parameters, microstructure, and mechanical properties of austempered ductile iron (ADI). Materials Science and Engineering: A. 857, 144063. https://doi.org/10.1016/j.msea.2022.144063.
  • [23] Liu, C., Du, Y., Ying, T., Zhang, L., Zhang, X., Wang, X., Yan, G. & Jiang, B. (2022). Effects of graphite nodule count on mechanical properties and thermal conductivity of ductile iron. Materials Today Communications. 31, 103522. https://doi.org/10.3390/lubricants10120326.
  • [24] Sellamuthu, P., Samuel, D.G.H., Dinakaran, D., Premkumar, V.P., Li, Z. & Seetharaman, S. (2018). Austempered ductile iron (ADI): influence of austempering temperature on microstructure. Mechanical and Wear Properties and Energy Consumption. Metals. 8(1), 53, 1-12. DOI:10.3390/MET8010053.
  • [25] Voigt, R.C. & Loper, C.R. (1984). Austempered ductile iron—process control and quality assurance. Journal of Heat Treating. 3, 291-309. DOI:10.1007/BF02833124.
  • [26] Sun, X., Wang, Y., Li, D.Y. & Wang, G. (2013). Modification of carbidic austempered ductile iron with nano ceria for improved mechanical properties and abrasive wear resistance. Wear. 301(1-2), 116-121. DOI:10.1016/J.WEAR.2012.12.018.
  • [27] Zahiri, S.H., Pereloma, E.V., Davies, C.H.J. (2013). Application of bainite transformation model to estimation of processing window boundaries for Mn-Mo-Cu austempered ductile iron. Materials Science and Technology. 17(12), 1563-1568. http://dx.doi.org/10.1179/026708301101509610.
  • [28] David, P., Massone, J., Boeri, R. & Sikora, J. (2004). Mechanical properties of thin wall ductile iron-influence of carbon equivalent and graphite distribution. ISIJ International. 44(7), 1180-1187, DOI: 10.2355/ISIJINTERNATIONAL.44.1180.
  • [29] Sztangret, Ł., Stanisławczyk, A. & Kusiak, J. (2009). Bio-inspired optimization strategies in control of copper flash smelting process. Computer Methods in Materials Science. 9(3), 400-408.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3416249e-844b-41bb-9ae9-e08ee4923593
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.