PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Responses of Physiological Characteristics of Annual C4 Herbs to Precipitation and Wind Changes in Semi-Arid Sandy Grassland, Northern China

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of changing precipitation and wind regimes on plant physiology are increasingly drawing attention of eco-physiologists. In the manipulative experiment we studied the physiological mechanisms of annual C4 herbs in the semi-arid sandy land to understand the functional significance of their traits and responses to the changing environment, grass Setaria viridis, characterized by the moderate stem water content and low leaf water content, more effectively absorbed light energy and utilized water resources than two dominant dicot plants, Salsola collina and Bassia dasyphylla. Precipitation increase and wind reduction promoted photosynthesis of the three C4 herbaceous plants, and their photosynthetic rates were higher in the end of July than that in August. Precipitation increase and the 20% reduction in wind velocity could also enhance their stomatal conductance and transpiration rate. The transpiration rate was consistent with the change in stomatal conductance, exhibiting highly positive correlation. The interactive effects of precipitation increase and wind velocity reduction made great changes in photosynthetic rate of the S. collina, lifted the photosynthetic rate and water use efficiency of the S. viridis. Our results suggest that the C4 herbs have shown some degree of stress resistance, and they are able to acclimate better to frangible environment of semi-arid sandy land. Furthermore, the changing environments heighten photosynthesis of the C4 herbs, which is pretty important to strength the arid plant stress resistance, then contributed to the ecosystem community production and dry matter accumulation.
Rocznik
Strony
121--131
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
  • University of Chinese Academy of Sciences, Beijing, China
  • Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
autor
  • Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, China
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • Forestry and Grassland Service Center in Tongwei County, Gansu Province, Dingxi, China
autor
  • Beijing ZTRC Environmental Protection Science &Technology Co., Ltd, Beijing, China
Bibliografia
  • 1. Ainsworth E. A., Rogers A. 2007 – The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions – Plant Cell Environ. 30: 258-270.
  • 2. Aphalo P. J., Jarvis P. G. 1993 – The boundary layer and the apparent responses of stomatal conductance to wind speed and the mole fractions of CO2 and water vapour in the air – Plant Cell Environ. 16: 771-783.
  • 3. Becklin K. M., Anderson J. T., Gerhart L. M., Wadgymar S. M., Wessinger C. A., Ward J. K. 2016 – Examining plant physiological responses to climate change through an evolutionary lens – Plant Physiol. 172: 635-649.
  • 4. Berthier S., Stokes A. 2005 – Phototropic response induced by wind loading in Maritime pine seedlings (Pinus pinaster Aït.) – J. Exp. Bot. 56: 851-856.
  • 5. Betts R. 1997 – Contrasting physiological and structural vegetation feedbacks in climate change simulations – Nature, 387 (6635): 796-799.
  • 6. Bunce J. 2004 – Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions – Oecologia (Berlin), 140: 1-10.
  • 7. Campitelli B. E., Simonsen A. K. 2012 – Plant evolutionary ecology: molecular genetics, global warming and invasions, and the novel approaches we are using to study adaptations – New Phytologist, 196: 975.
  • 8. Cao K. F. 2000 – Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest – Can. J. Bot. 78: 1245-1253.
  • 9. Chen S. P., Bai Y. F., Zhang L. X., Han X. G. 2005 – Comparing physiological responses of two dominant grass species to nitrogen addition in xilin river basin of china – Environ. Exp. Bot. 53: 65-75.
  • 10. Claussen W. 2002 – Growth, water use efficiency, and proline content of hydroponically grown tomato plants as affected by nitrogen source and nutrient concentration – Plant Soil, 247: 199-209.
  • 11. Craven D., Dent D., Braden D., Ashton M. S., Berlyn G. P., Hall J. S. 2011 – Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama – Forest Ecol. Manage. 261: 1643-1653.
  • 12. Daudet F. A., Roux X. L., Sinoquet H., Adam B. 1999 – Wind speed and leaf boundary layer conductance variation within tree crown: Consequences on leaf-to-atmosphere coupling and tree functions – Agri. forest meteorol. 97: 171-185.
  • 13. Fatichi S., Leuzinger S., Korner C. 2013 – Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling – New Phytologist, 201: 1086-1095.
  • 14. Helmuth B., Carrington E. 2005 – Biophysics, physiological ecology, and climate change: Does Mechanism Matter – Ann. Rev. Physiol. 67: 177-201.
  • 15. Hofmann G. E., Todgham A. E. 2010 – Living in the now: physiological mechanisms to tolerate a rapidly changing environment – Ann. Rev. Physiol. 72: 127-145.
  • 16. Iogna P. A., Bucci S. J., Scholz F. G., Goldstein G. 2013 – Homeostasis in leaf water potentials on leeward and windward sides of desert shrub crowns: water loss control vs. high hydraulic efficiency – Oecologia, 173: 675-687.
  • 17. Kim S. H., Sicher R. C., Bae H., Gitz D. C., Reddy V. R. 2006 – Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment – Glob. Change Biol. 12: 588-600.
  • 18. Knapp A. K., Beier C., Briske, D. D., Classen A. T., Luo Y. W., Reichstein M., Smith M. D., Smith S. D., Bell J. E., Fay P. A., Heisler J. L., Leavitt S., Sherry R. A., Smith S., Weng E. 2008 – Consequences of more extreme precipitation regimes for terrestrial ecosystems – Bioscience, 58: 811-821.
  • 19. Knapp A. K., Hoover D. L., Wilcox K. R., Avolio M. L., Koerner S. E., La Pierre K. J., Loik M. E., Luo Y., Sala O. E., Smith M. D. 2015 – Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments – Glob. Change Biol. 21: 2624-2633.
  • 20. Kothari A. R., Burnett N. P. 2017 – Herbivores alter plant-wind interactions by acting as a point mass on leaves and by removing leaf tissue – Ecol. Evol. 7: 6884-6893.
  • 21. Liu X. P., He Y. H., Zhang T. H., Zhao X. Y., Li Y. Q., Zhang L. M., Wei S. L., Yun J. Y., Yue X. F. 2015a – The response of infiltration depth, evaporation, and soil water replenishment to rainfall in mobile dunes in the Horqin Sandy Land, Northern China – Environ. Earth Sci. 73: 8699-8708.
  • 22. Liu X. P., He Y. H., Zhao X. Y., Zhang T. H., Zhang L. M., Ma Y. H., Yao S. X., Wang S. K., Wei S. L. 2015b – Characteristics of deep drainage and soil water in the mobile sandy lands of Inner Mongolia, northern China – J. Arid Land, 7: 238-250.
  • 23. Liu X. P., He Y. H., Zhao X. Y., Zhang T. H., Li Y. L., Yun J. Y., Wei S. L., Yue X. F. 2016 – The response of soil water and deep percolation under Caragana microphylla to rainfall in the Horqin Sand Land, northern China – Catena, 139: 82-91.
  • 24. Lourens P., Frans B. 2006 – Leaf traits are good predictors of plant performance across 53 rain forest species – Ecology, 87: 1733-1743.
  • 25. Luo Y. Y., Zhao X. Y., Zhou R. L., Zuo X. A., Zhang J. H., Li Y. Q. 2011 – Physiological acclimation of two psammophytes to repeated soil drought and rewatering – Acta Physiol. Plant. 33: 79-91.
  • 26. Morgan J. A., Lecain D. R., Elise P., Blumenthal D. M., Kimball B. A., Yolima C., Williams D. G., Jana H. W., Dijkstra F. A., Mark W. 2011 – C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland – Nature, 476 (7359): 202.
  • 27. Niu F. R., Duan D. P., Chen J., Xiong P. F., Zhang H., Wang Z., Xu B. C. 2016 – Eco-Physiological Responses of Dominant Species to Watering in a Natural Grassland Community on the Semi-Arid Loess Plateau of China – Front. Plant Sci. 7, https://doi.org/10.3389/fpls.2016.00663.
  • 28. Pearce W., Holmberg K., Hellsten I., Nerlich B. 2014 – Climate change on Twitter: topics, communities and conversations about the 2013 IPCC report – PLoS ONE, 9 (4), e94785.
  • 29. Poorter H., Pepin S., Rijkers T., Jong Y. D., Evans J. R., Körner C. 2006 – Construction costs, chemical composition and paybacktime of high- and low-irradiance leaves – J. Experimen. Bot. 57: 355-371.
  • 30. Riedo M., Gyalistras D., Fischlin A., Fuhrer J. 1999 –Using an ecosystem model linked to GCM-derived local weather scenarios to analyse effects of climate change and elevated CO2 on dry matter production and partitioning, and water use in temperate managed grasslands – Glob. Change Biol. 5: 213-223.
  • 31. Senock R. S. 1994 –Ecophysiology of three C4perennial grasses in the Northern Chihuahuan Desert – Southwest. Nat. 39: 122-127.
  • 32. Smith N. G., Keenan T. F., Colin Prentice I., Wang H., Wright I. J., Niinemets U., Crous K. Y., Domingues T. F., Guerrieri R., Ishida F. Y., Kattge J., Kruger E. L., Maire V., Rogers A., Serbin S. P., Tarvainen L., Togashi H. F., Townsend P. A., Wang M., Weerasinghe L. K., Zhou S. X. 2018 – Global photosynthetic capacity is optimized to the environment – Ecol. Lett. 22: 506-517.
  • 33. Thomey M. L., Collins S. L., Friggens M. T., Brown R. F., Pockman W. T. 2014 –Effects of monsoon precipitation variability on the physiological response of two dominant C4 grasses across a semiarid ecotone – Oecologia, 176: 751-762.
  • 34. Vass I., Cser K., Cheregi O. 2007 – Molecular mechanisms of light stress of photosynthesis – Molecular mechanisms of photosynthesis – Ann. NY Acad. Sci. 1113:114-122.
  • 35. Wei L. Y., Huang Y. Q., Li X. K., Mo L., Yuan W. Y. 2009 – Effects of soil water on photosynthetic characteristics and leaf traits of Cyclobalanopsis glauca seedlings growing under nutrient-rich and -poor soil – Acta Ecologica Sinica, 29: 160-165.
  • 36. Woodward F. I., Diament A. D. 1991 – Functional approaches to predicting the ecological effects of global change – Funct. Ecol. 5 (2): 202.
  • 37. Yu G. R., Wang Q. F., Zhuang J. 2004 – Modeling the water use efficiency of soybean and maize plants under environmental stresses: application of a synthetic model of photosynthesis-transpiration based on stomatal behavior – J. Plant Physiol. 161: 303-318.
  • 38. Zhu J. J., Li X. F., Yutaka G., Takeshi M. 2004 – Wind profiles in and over trees – J. For. Res. 15: 305.
  • 39. Zuo X. A., Zhao X. Y., Zhao H. L., Zhang T. H., Guo Y. R., Li Y. Q., Huang Y. X. 2009 – Spatial heterogeneity of soil properties and vegetation-soil relationships following vegetation restoration of mobile dunes in horqin sandy land, northern China – Plant Soil, 318: 153-167.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34110566-1218-4b33-8509-67941f9be4a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.