PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of Single Crystalline Titanium Oxide and Sodium Titanate Nanorods via Salt-Assisted Ultrasonic Spray Pyrolysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The simple and continuous synthesis of single crystalline anatase titanium dioxide and sodium titanate nanorods by a saltassisted ultrasonic spray pyrolysis method is demonstrated. This method does not require expensive precursors, long reaction time, and physical templates or surfactant. In addition, its continuous nature makes it a suitable method for the large-scale preparation. Moreover, the effect of a salt concentration in a starting solution on material properties, including morphology and phase of the synthesized products was systematically investigated. The synthesized nanorods had one-dimensionality, a single crystalline and the average diameter of 12.3 nm with dual phases of titanium dioxide and sodium titanate by FE-SEM, XRD, HR-TEM as well as FFT-converted SAED pattern analysis.
Słowa kluczowe
Twórcy
autor
  • Dept. of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul-Si 01811, Korea (Republic of)
autor
  • Dept. of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul-Si 01811, Korea (Republic of)
autor
  • Dept. of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul-Si 01811, Korea (Republic of)
Bibliografia
  • [1] H. Melhem, P. Simon, L. Beouch, F. Goubard, M. Boucharef, C.D. Bin, Y. Leconte, B. Ratier, N. Herlin-Boime, J. Boucle, Adv. Energy Mater. 1, 908 (2011).
  • [2] J. Huo, Y. Hu, H. Jiang, W. Huang, Y. Li, W. Shao, C. Li, Ind. Eng. Chem. Res. 52, 11029 (2013).
  • [3] M.D. Hernandez-Alonso, F. Fresno, S. Suarez, J.M. Coronado, Energy Environ. Sci. 2, 1231 (2009).
  • [4] K. Zhu, X. Liu, J. Du, J. Tian, Y. Wang, S. Liu, Z. Shan, J. Mater. Chem. A. 3, 6455 (2015).
  • [5] H. Wang, M. Liu, M. Zhang, P. Wang, H. Miura, Y. Cheng, J. Bell, Phys. Chem. Chem. Phys. 13, 17359 (2011).
  • [6] J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, L. Qi, Energy Environ. Sci. 5, 7575 (2012).
  • [7] Y. Guo, G. Liu, Z. Ren, A. Piyadasa, P.X. Gao, CrystEngComm. 15, 8345 (2013).
  • [8] D.H. Kim, W.M. Seong, I.J. Park, E.S. Yoo, S.S. Shin, J.S. Kim, H.S. Jung, S.W. Lee, K.S. Hong, Nanoscale. 5, 11725 (2013).
  • [9] M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S.S. Al--Deyab, Y. Lai, J. Mater. Chem. A. 4, 6772 (2016).
  • [10] W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Nanoscale. 6, 1946 (2014).
  • [11] S.S. Chen, X. Mao, Chem. Rev. 107, 2891 (2007).
  • [12] M. Liu, L. Piao, L. Zhao, S. Ju, Z. Yan, T. He, C. Zhou, W. Wang, Chem. Commun. 46, 1664 (2010).
  • [13] G.H. An, T.Y. Hwang, J.R. Kim, J.B. Kim, N.S. Kang, S.I. Kim, Y.M. Choi, Y.H. Choa, J. Alloy. Compd. 583, 145 (2014).
  • [14] Y. Itoh, I.W. Lenggoro, J. Mater. Res. 17, 3222 (2002).
  • [15] N. Shimizu, K. Myoujin, T. Kodera, T. Ogihara, Key Eng. Mater. 566, 281 (2013).
  • [16] Y. Zhang, H. Hou, X. Yang, J. Chen, M. Jing, Z. Wu, X. Jia, X. Ji, J. Power Sources. 305, 200 (2016).
  • [17] W. Wang, C. Yu, Z. Lin, J. Hou, H. Zhu, S. Jiao, Nanoscale. 5, 594 (2013).
  • [18] Z. Zhang, J.B.M. Goodall, S. Brown, L. Karlsson, R.J.H. Clark, J.L. Hutchison, I.U. Rehman, J.A. Darr, Dalton Trans. 39, 711 (2010).
  • [19] C.Y. Xu, J. Wu, P. Zhang, S.P. Hu, J.X. Cui, Z.Q. Wang, Y.D. Huang, L. Zhen, Cryst. Eng. Comm. 15, 3448 (2013).
  • [20] A.L. Patterson, Phys. Rev. 56, 978 (1939).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-340fd4fc-05dd-4662-bf47-d31ec5981353
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.