PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal characterization of curing process in unsaturated polyester resin based polymer concrete

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a description of the temperature changes that take place in the curing system of polymer concrete. The research used polymer concrete composed of 30% by volume unsaturated polyester resin acting as a binder for powder fillers. Among the powder fillers, ground glass waste and sand in a volume ratio of 1:1 were used. The investigations were carried out for three volumes, 10, 100 and 1000 cm3, respectively. The temperature in the central point of the volume (the highest temperature) was measured by the ATD method using a NiCr-NiAl thermocouple, and the temperature on the polymer concrete surface was measured using a thermal imaging camera. The temperature-time course recorded for both the measuring points allowed evaluation of the curing system parameters (gelation time, maximum curing temperature, time to maximum temperature), important for the processing of polymer concrete. Additionally, the knowledge of the temperature curves enabled a mathematical description of the heat flow between the measuring points. The conducted studies proved that the volume of the mold is important for the maximum temperature and curing time. The work is a continuation of previous research focused on polymer concrete and is an extension of information oriented to the industrial aspect. Knowledge of the temperaturę peaks and curing time will allow adjustments to be made to the manufacturing processes.
Rocznik
Strony
166--171
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] Mulligan S., Hatton P.V., Martin N., Resin-based composite materials: elution and pollution, British Dental Journal 2022, 232(9), 644-652.
  • [2] Azlin M.N.M., Sapuan S.M., Zainudin E.S., Zuhri M.Y.M., Natural fibre reinforced polyester composites: a review, 7th Postgraduate Seminar on Natural Fibre Reinforced Polymer Composites 2020.
  • [3] Pielichowski J., Czub P., Penczek P., Bończa-Tomaszewski Z., Chemia i technologia żywic epoksydowych, Warszawa 2016.
  • [4] Bello S.A., Agunsoye J.O., Hassan S.B., Kana M.G.Z., Raheem I.A., Epoxy resin based composites, mechanical and tribological properties: a review, Tribology in Industry 2015, 37(4), 500-524.
  • [5] Brydson J.A., Plastic Materials, 7th ed., Oxford 1996.
  • [6] Bradly S., Epoxy/Clay Nanocomposites: Effect of Clay and Resin Chemistry on Cure and Properties, M.SC. Thesis, School of Science and Applied Chemistry, Queensland University of Technology 2004, 1.
  • [7] Jouyandeh M., Rahmati N., Movahedifar E., Hadavand B.S., Karami Z., Ghaffari M., Taheri P., Bakhshandeh E., Vahabi H., Ganjali M.R., Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective, Prog. Org. Coat. 2019, 133, 220-228, DOI: 10.1016/j.porgcoat.2019.04.034.
  • [8] Saleh N.J., Razak A.A.A., Tooma M.A., Aziz M.E., A study mechanical properties of epoxy resin cured at constant curing time and temperature with different hardeners, Eng. & Tech. Journal 2011, 29(9), 1804-1818.
  • [9] Muc A., Romanowicz P., Chwał M., Description of the resin curing process-formulation and optimization, Polymers 2019, 11(1), 127, DOI: 10.3390/polym11010127.
  • [10] Lloyd C.H., Joshi A., McGlynn E., Temperature rise produced by light sources and composites during curing, Dental Materials 1986, 2(4), 170-174.
  • [11] McHugh J., Stark W., Doering J., Evaluation of the cure behavior of epoxy resin using rheometric and ultrasonic techniques, Non Destructive Characterization of Materials 2003, XI, 6, 651-657.
  • [12] Mistewicz K., Jesionek M., Kim H.J., Hajra S., Kozioł M., Chrobok Ł., Wang X., Nanogenerator for determination of acoustic power in ultrasonic reactors, Ultrasonic Sonochemistry 2021, 78, 105718, DOI: 10.1016/j.ultsonch.2021.105718.
  • [13] Czub P., Bończa-Tomaszewski Z., Penczek P., Pielichowski J., Chemia i technologia żywic epoksydowych, WNT, Warszawa 2002.
  • [14] Penczek P., Kłosowska-Wołkowicz Z., Królikowski W., Nienasycone żywice poliestrowe, WNT, Warszawa 2010.
  • [15] Kozioł M., Nasycanie ciśnieniowo-próżniowe zszywanych oraz tkanych trójwymiarowo preform z włókna szklanego, monografia, Wydawnictwo Politechniki Śląskiej, Gliwice 2016.
  • [16] Dykeman D., Minimizing Uncertainty in Cure Modeling for Composites Manufacturing, Ph.D. Dissertation, Department of Materials Engineering, University of British Columbia, Vancouver, BC Canada, 2008.
  • [17] Hubert P., Cure Kinetics and Viscosity Models for Hexcel 8552 Epoxy Resin, Proceedings of the 46th International SAMPE Symposium. Long Beach, CA, USA 2001, 2341-2354.
  • [18] Epoxy Technology Inc., Pot Life, Working Life and Gel Time of Epoxies, online at: https://www.epotek.com/docs/en/Related/Tech%20Tip%2026%20Pot%20Life,%20Working%20Life%20and%20Gel%20Time%20of%20Epoxies.pdf (accesed: 06.06.2022).
  • [19] Smoleń J., Olesik P., Gradoń P., Chudy M., Mendala B., Kozioł M., The use of the ATD technique to measure the gelation time of epoxy resins, Materials 2021, 14, 6022, DOI: 10.3390/ma14206022.
  • [20] Shimkin A.A., Methods for the determination of the gel time of polymer resins and prepregs, Russian Journal of General Chemistry 2016, 86(6), 1488-1493.
  • [21] Ramis X., Salla J.M., Time-temperature transformation (TTT) cure diagram of an unsaturated polyester resin, J. Polym. Sci. Part B: Polym. Phys. 1997, 35, 371-388.
  • [22] Kozioł M., Mocek P., Jankowski P., Wpływ objętości próbki chemoutwardzalnej żywicy poliestrowej na przebieg jej utwardzania, Polimery 2016, 61(2), 133-141.
  • [23] Kupke M., Wentzel H.-P., Schulte K., Electrically conductive glass fibre reinforced epoxy resin, Mat. Res. Innovat. 1998, 2, 164-169.
  • [24] Baron M.R., Caulk D.A., The effect of deformation and thermoset cure on heat conduction in a chopped-fiber reinforced polyester during compression molding, International Journal of Heat and Mass Transfer 1979, 22(7), 1021-1032.
  • [25] Kozioł M., Gradoń P., Effect of glass fibre presence on curing process of unsaturated polyester resin, Composites Theory and Practice 2018, 18(4), 191-195.
  • [26] Cho S., Douglas E.P., Lee J.Y., Transition diagrams for a liquid crystalline thermoset containing a rigid-rod epoxy, Polym. Eng. Sci. 2006, 46, 5, 623-629, DOI: 10.1002/pen.20496.
  • [27] Pascault J.P., Williams R.J.J., Glass transition temperaturę versus conversion relationships for thermosetting polymers, J. Polym. Sci. Part B Polym. Phys. 1990, 28, 1, 85-95, DOI: 10.1002/polb.1990.090280107.
  • [28] Šesták J., Holba P., Heat inertia and temperature gradient in the treatment of DTA peaks: Existing on every occasion of real measurements but until now omitted, J. Therm. Anal. Calorim. 2013, 113, 3, 1633-1643, DOI: 10.1007/s10973-013-3025-3.
  • [29] Vold M.J., Differential Thermal Analysis 1949, 2, 6, 6.
  • [30] Šesták J., Holba P., Imperfections of Kissinger Evaluation Method and the Explanation of Crystallization Kinetics of Glasses and Melts, [in:] Thermal Physics and Thermal Analysis, 11, eds. J. Šesták, P. Hubík, J.J. Mareš, Cham, Springer International Publishing 2017, 213-236, DOI: 10.1007/978-3-319-45899-1_10.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-340edd2a-76ff-420f-92bc-e65706ce61e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.