PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The viscoelasticity, anisotropy and location-dependence of mechanical properties of rabbit iris investigated using uniaxial tensile tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abnormal iris mechanical properties have been considered to be an important cause of pupillary-block and angle-closure glaucoma. In this research, viscoelasticity, anisotropy and location-dependence of mechanical properties of rabbit iris were investigated using uniaxial tensile test. Methods: Iris strips were taken along three directions: inner-circumferential direction (ICD), outer-circumferential direction (OCD) and radial direction (RD), respectively. Quasi-static tensile tests and stress–relaxation tests were applied on the iris strips. Then, the stress–stretch data was fitted with third order Ogden model; the stress–relaxation data was fitted with the third order Prony series model. Through comparing the tangent modulus and relaxation limit of the strips from different directions and locations, the viscoelasticity, anisotropy and location-dependence of mechanical properties of rabbit iris were explored. Results: The tangent moduli of iris at the stretch of 1.05 along ICD, OCD, and RD were 3.2 ± 1.4 kPa, 4.2 ± 2.6 kPa, 1.5 ± 0.8 kPa, respectively. Iris strips in ICD and OCD were found to have almost the same stress–relaxation behavior, and both relaxed slower than iris strips in RD. Conclusions: The mechanical properties of the iris were typically nonlinear, viscoelastic, anisotropic and location-dependent. The stress growth rate of the circumferential direction iris strip is significantly lower than that of RD and the stress–relaxation rate is significantly higher than that of the RD. That is, the iris is more prone to deformation in RD and the stress–retention ability after deformation in RD is weak, which is consistent with the fact that the iris bombe more likely happens in RD in vivo. The results of this study may also help us to establish a more accurate finite element model to simulate the flow field of humor aqueous and find the key factor of pupillary-block.
Rocznik
Strony
85--92
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
  • State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
autor
  • School of Biomedical Engineering, Capital Medical University, Beijing, China
  • Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
autor
  • School of Biomedical Engineering, Capital Medical University, Beijing, China
  • Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
autor
  • School of Biomedical Engineering, Capital Medical University, Beijing, China
  • Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
autor
  • School of Biomedical Engineering, Capital Medical University, Beijing, China
  • Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
Bibliografia
  • [1] AUNG T., LIM M.C., CHAN Y.H., ROJANAPONGPUN P., CHEW P.T., Configuration of the drainage angle, intraocular pressure, and optic disc cupping in subjects with chronic angle- -closure glaucoma, Ophthalmology, 2005, 112 (1), 28–32.
  • [2] CHEN S., A NA, ROCCABIANCA S., A microstructurally inspired constitutive model for skin mechanics, Biomech. Model Mechanobiol., 2020, 19 (1), 275–289.
  • [3] CHRISTENSEN M.B., OBERG K., WOLCHOK J.C., Tensile properties of the rectal and sigmoid colon: a comparative analysis of human and porcine tissue, Springerplus, 2015, 4, 142.
  • [4] FUNG Y.C., FRONEK K., PATITUCCI P., Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol., 1979, 237 (5), H620–31.
  • [5] HEYS J., BAROCAS V.H., Mechanical characterization of the bovine iris, J. Biomech., 1999, 32 (9), 999–1003.
  • [6] HEYS J.J., BAROCAS V.H., TARAVELLA M.J., Modeling passive mechanical interaction between aqueous humor and iris, J. Biomech. Eng., 2001, 123 (6), 540–547.
  • [7] HUMPHREY J.D., STRUMPF R.K., YIN F.C., A constitutive theory for biomembranes: application to epicardial mechanics, J. Biomech. Eng., 1992, 114 (4), 461–466.
  • [8] JIA Z.G., LI W., ZHOU Z.R., Mechanical characterization of stomach tissue under uniaxial tensile action, J. Biomech., 2015, 48 (4), 651–658.
  • [9] KIKUCHI M., FENG Z., KOSAWADA T., SATO D., NAKAMURA T., UMEZU M., Stress relaxation and stress–strain characteristics of porcine amniotic membrane, Biomed. Mater. Eng., 2016, 27 (6), 603–611.
  • [10] LEE S.S., MACKEY D.A., Glaucoma – risk factors and current challenges in the diagnosis of a leading cause of visual impairment, Maturitas., 2022, 163, 15–22.
  • [11] LI L., QIAN X., WANG H., HUA L., ZHANG H., LIU Z., Power type strain energy function model and prediction of the anisotropic mechanical properties of skin using uniaxial extension data, Med. Biol. Eng. Comput., 2013, 51 (10), 1147–1156.
  • [12] LI L., QIAN X., YAN S., HUA L., ZHANG H., LIU Z., Determination of the material parameters of four-fibre family model based on uniaxial extension data of arterial walls, Comput. Methods Biomech. Biomed. Engin., 2014, 17 (7), 695–703.
  • [13] LI T., QIN X., ZHANG H., LI L., LIU Z.. Regional Changes of Iris Stiffness in the Rabbits Suffered from Chronic High Intraocular Pressure, J. Med. Biol. Eng., 2021, 41 (2), 165–174.
  • [14] OGDEN R.W., Non-Linear Elastic Deformations, Dover Publications, New York, 1997.
  • [15] PALKO J.R., PAN X., LIU J., Dynamic testing of regional viscoelastic behavior of canine sclera, Exp. Eye Res., 2011, 93 (6), 825–832.
  • [16] RASSOLI A., FATOURAEE N., Structural model for viscoelastic properties of pericardial bioprosthetic valves, Artificial Organs, 2018, 42 (6), 630–639.
  • [17] SAFA B.N., WONG C.A., HA J., ETHIER C.R., Glaucoma and biomechanics, Curr. Opin. Ophthalmol., 2022, 33 (2), 80–90.
  • [18] SAFSHEKAN F., TAFAZZOLI-SHADPOUR M., ABDOUSS M., SHADMEHR M.B., Viscoelastic Properties of Human Tracheal Tissues, J. Biomech. Eng., 2017, 139 (1), 011007.
  • [19] SCHUSTER A.K., FISCHER J.E., VOSSMERBAEUMER U., Curvature of iris profile in spectral domain optical coherence tomography and dependency to refraction, age and pupil size – the MIPH Eye&Health Study, Acta Ophthalmol., 2017, 95 (2), 175–181.
  • [20] STAVROPOULOU E.A., DAFALIAS Y.F., SOKOLIS D.P., Biomechanical and histological characteristics of passive esophagus: experimental investigation and comparative constitutive modeling, J. Biomech., 2009, 42 (16), 2654–2663.
  • [21] SU P., YANG Y., XIAO J., SONG Y., Corneal hyper-viscoelastic model: derivations, experiments, and simulations, Acta Bioeng. Biomech., 2015, 17 (2), 73–84.
  • [22] THAM Y.C., LI X., WONG T.Y., QUIGLEY H.A., AUNG T., CHENG C.Y., Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta- -analysis, Ophthalmology, 2014, 121 (11), 2081–2090.
  • [23] WANG W., QIAN X., SONG H., ZHANG M., LIU Z., Fluid and structure coupling analysis of the interaction between aqueous humor and iris, Biomed. Eng. Online, 2016, 15 (Suppl. 2), 133.
  • [24] WHITCOMB J.E., BARNETT V.A., OLSEN T.W., BAROCAS V.H., Ex vivo porcine iris stiffening due to drug stimulation, Exp. Eye Res., 2009, 89 (4), 456–461.
  • [25] WHITCOMB J.E., AMINI R., SIMHA N.K., BAROCAS V.H., Anterior-posterior asymmetry in iris mechanics measured by indentation, Exp. Eye Res., 2011, 93 (4), 475–481.
  • [26] YOO L., REED J., SHIN A., KUNG J., GIMZEWSKI J.K., POUKENS V., GOLDBERG R.A., MANCINI R., TABAN M., MOY R., DEMER J.L., Characterization of ocular tissues using microindentation and Hertzian viscoelastic models, Invest. Ophthalmol. Vis. Sci., 2011, 52 (6), 3475–3482.
  • [27] ZENG Y., YANG J., HUANG K., LEE Z., LEE X., A comparison of biomechanical properties between human and porcine cornea, J. Biomech., 2001, 34 (4), 533–537.
  • [28] ZHANG D., QIN X., ZHANG H., LI L., Time-varying regularity of changes in biomechanical properties of the corneas after removal of anterior corneal tissue, Biomed. Eng. Online, 2021, 20 (1), 113.
  • [29] ZHANG D., ZHANG H., TIAN L., ZHENG Y., FU C., ZHAI C., LI L., Exploring the Biomechanical Properties of the Human Cornea In Vivo Based on Corvis ST, Front Bioeng. Biotechnol., 2021, 9, 771763.
  • [30] ZHANG H., QIAN X., LI L., LIU Z., Understanding the viscoelastic properties of rabbit cornea based on stress–relaxation tests and cyclic uniaxial tests, J. Mech. Med. Biol., 2017, 17 (07), 1740035.
  • [31] ZHANG H., KHAN M.A., ZHANG D., QIN X., LIN D., Corneal biomechanical properties after FS-LASIK with residual bed thickness less than 50% of the original corneal thickness, J. Ophthalmol., 2018, 2752945.
  • [32] ZHANG K., QIAN X., MEI X., LIU Z., An inverse method to determine the mechanical properties of the iris in vivo, Biomed. Eng. Online, 2014, 13, 66.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-340ed1d3-a162-4226-865d-1a858b1395d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.