PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza właściwości palnych i termicznych wytypowanych wykładzin podłogowych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Analysis of the flammable and thermal properties of the selected floor coverings
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wyniki prac nad właściwościami palnymi wytypowanych wykładzin wełnianych, polimerowych oraz mieszanek wełny z polimerami termoplastycznymi (PA, PP). Przeprowadzono analizę termograwimetryczną wg normy PN-EN ISO 11358:2014 oraz określono szybkość wydzielenia ciepła i dymu za pomocą kalorymetru stożkowego wg normy ISO 5660:2015. Dodatkowo wyznaczono wartości ciepła spalania z użyciem bomby kalorymetrycznej wg normy PN-EN ISO 1716:2010.
EN
The article identifies the flammable properties of the selected wool and polimer linings as well as the mixtures of the wool and thermoplastic polymers. The thermogravimetric analysis was carried out according to the PN-EN ISO 11358:2014 standard, the heat release rate and the smoke release rate were determined using a cone calorimeter according to the ISO 5660:2015 standard. In addition, the combustion heat values were determined using a calorimetric bomb according to the PN-EN ISO 1716: 2010 standard.
Rocznik
Strony
17--36
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Student - Wydział Inżynierii Bezpieczeństwa Pożarowego, Szkoła Główna Służby Pożarniczej
Bibliografia
  • [1] Biuletyn Informacyjny PSP za rok 2017 (http://www.straz.gov.pl/aktualnosci/ biuletyny, dostęp: 10.08.2018).
  • [2] Wolisz H., Kull T. M., Streblow R. and Müller D., The Effect of Furniture and Floor Covering Upon Dynamic Thermal Building Simulations, Energy Procedia 2015, 78, 2154–2159.
  • [3] Ding L., Song R. and Li B., An easy-to-obtain silicone-containing flame retardant and its effects on the combustion of polycarbonate, Journal of Applied Polymer Science 2012, 126, 1489–1496.
  • [4] Qian X., Song L., Bihe Y., Yu B., Shi, Y., Hu Y. and Yuen R. K. K., Organic/ inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system, Materials Chemistry and Physics 2014, 143, 1243–1252.
  • [5] Tai Q., Song L., Lv X., Lu H., Hu Y. and Yuen R. K. K., Flame-retarded polystyrene with phosphorus – and nitrogen-containing oligomer: Preparation and thermal properties, Journal of Applied Polymer Science 2012, 123, 770–778.
  • [6] Yuan D., Yin H., and Cai X., Effect of a novel flame retardant containing silicon and nitrogen on the thermal stability and flame retardancy of polycarbonate, Journal of Thermal Analysis and Calorimetry 2013, 111, 1531–1537.
  • [7] Dong C., Lu Z., Zhu P., Zhang F., and Zhang X., Combustion behaviors of cotton fabrics treated by a novel guanidyl – and phosphorus-containing polysiloxane flame retardant, Journal of Thermal Analysis and Calorimetry 2015, 119, 349–357.
  • [8] Daniel Y. G. and Howell B. A., Phosphorus flame retardants from isosorbide bis – acrylate, Polymer Degradation and Stability 2018.
  • [9] Sun S., He Y., Wang X. and Wu D., Flammability characteristics and performance of halogen-free flame-retarded polyoxymethylene based on phosphorus-nitrogen synergistic effects, Journal of Applied Polymer Science 2010, 118, 611–622.
  • [10] Jiang W., Jin F.-L. and Park S.-J., Synthesis of a novel phosphorus-nitrogen-containing intumescent flame retardant and its application to fabrics, Journal of Industrial and Engineering Chemistry 2015, 27, 40–43.
  • [11] Nguyen T.-M. D., Chang S., Condon B., Uchimiya M. and Fortier C., Development of an environmentally friendly halogen-free phosphorus-nitrogen bond flame retardant for cotton fabrics: ENVIRONMENTALLY FRIENDLY FLAME RETARDANT FOR COTTON, Polymers for Advanced Technologies 2012, 23, 1555–1563.
  • [12] Sun Z., Hou Y., Hu Y. and Hu W., Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin, Materials Chemistry and Physics 2018, 214, 154–164.
  • [13] Kilinc M., Cakal G. O., Bayram G., Eroglu I. and Özkar S., Flame retardancy and mechanical properties of pet-based composites containing phosphorus and boron-based additives, Journal of Applied Polymer Science 2015, 132, n/a-n/a.
  • [14] Jiang S., Shi Y., Qian X., Zhou K., Xu H., Lo S., Gui Z. and Hu Y., Synthesis of a Novel Phosphorus – and Nitrogen-Containing Acrylate and Its Performance as an Intumescent Flame Retardant for Epoxy Acrylate, Industrial & Engineering Chemistry Research 2013, 52, 17442–17450.
  • [15] Wang G.-A., Cheng W.-M., Tu Y.-L., Wang C.-C. and Chen C.-Y., Characterizations of a new flame-retardant polymer, Polymer Degradation and Stability 2006, 91, 3344–3353.
  • [16] Hsiue G.-H., Liu Y.-L. and Tsiao J., Phosphorus-containing epoxy resins for flame retardancy V: Synergistic effect of phosphorus-silicon on flame retardancy, Journal of Applied Polymer Science 2000, 78, 1–7.
  • [17] Ebdon J. R., Hunt B. J., Jones M. S. and Thorpe F. G., Chemical modification of polymers to improve flame retardance—II. The influence of silicon-containing groups, Polymer Degradation and Stability 1996, 54, 395–400.
  • [18] Chen X., Chen J., Qiao X., Wang D. and Cai X., Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound, Applied Catalysis B: Environmental 2008, 80, 116–121.
  • [19] Kandola B. K. and Horrocks A. R., Complex char formation in flame-retarded fibre-intumescent combinations–II. Thermal analytical studies, Polymer Degradation and Stability 1996, 54, 289–303.
  • [20] Chen J., Liu, S. and Zhao J., Synthesis, application and flame retardancy mechanism of a novel flame retardant containing silicon and caged bicyclic phosphate for polyamide 6, Polymer Degradation and Stability 2011, 96, 1508–1515.
  • [21] Li Q., Jiang P., Su Z., Wei P., Wang G. and Tang X., Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene, Journal of Applied Polymer Science 2005, 96, 854–860.
  • [22] Fire retardant materials. CRC Press Woodhead: Boca Raton, FL: Cambridge, England 2001.
  • [23] Horrocks A. R., Flame-retardant Finishing of Textiles, Review of Progress in Coloration and Related Topics 2008, 16, 62–101.
  • [24] Horrocks A. R. and Davies P. J., Char formation in flame-retarded wool fibres. Part 1. Effect of intumescent on thermogravimetric behaviour, Fire and Materials 2000, 24, 151–157.
  • [25] Michalovič R., Fire Safety Assessment on Seven Flooring Materials, Research Journal of Recent Sciences 2014, 3(10), 59–62.
  • [26] Advances in fire retardant materials. Woodhead Publ. [u.a.]: Cambridge 2008.
  • [27] Zhang S. and Horrocks A. R., A review of flame retardant polypropylene fibres, Progress in Polymer Science 2003, 28, 1517–1538.
  • [28] ASTM D2859 Standard Test Method for Ignition Characteristics of Finished Textile Floor Covering Materials.
  • [29] www.eco-terric.com/flammability-report.pdf (dostęp: 10.08.2018).
  • [30] Handbook of building materials for fire protection. McGraw-Hill: New York 2004.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-340dc451-1b51-4121-99ae-c54a008b1e6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.