Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to determine whether biometric features of plants collected from single-species phytocoenoses developing in ponds can be used to describe habitat conditions of these water bodies. The biometric measurements were carried out in 148 field small water bodies at a total of 198 sites. The length of plants, their dry biomass, and volume of plant shoots were analyzed, converted to 1000 dm3 of water. The biometric measurements showed very large differences in individual parameters of different macrophyte species. The biggest differences were found in the length of elodeids and helophytes (from 1 cm to > 900 cm), regardless of trophic conditions. Although the Polish flora is dominated by plants having a wide ecological range, there are species whose parameters correspond to specific habitat fertility. The highest biometric parameters were found for Ceratophyllum submersum, Sparganium erectum, Typha latifolia and Schoenoplectus lacustris in ponds characterized by increased trophic conditions. In contrast, Myriophyllum spp. alone showed a negative correlation with trophic state indices. The trophic effect on the studied parameters becomes more apparent for species with optima in fertile water bodies. The parameters of Ceratophyllum submersum can be considered as the trophic state index (TSI).
Czasopismo
Rocznik
Tom
Strony
38--50
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
- Department of Water Protection, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
autor
- Department of Water Protection, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
Bibliografia
- [1]. Agostini S., Pergent G. &, Marchand B. (2003). Growth and primary production of Cymodocea nodosa in a coastal lagoon. Aquatic Botany, 76: 185-193. D0I:10.1016/S0304-3770(03)00049-4.
- [2]. Bachmann R.W., Horsburgh C.A., Hoyer M.V., Mataraza L.K. & Canfield D.K.Jr. (2002). Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia, 470: 219-234.
- [3]. Canfield D., Shireman J., Colle D., Haller W, Watkins C. & Maceina M. (1984). Prediction of chlorofyll a concentrations in Florida lakes: importance of aquatic macrophytes, Canadian Journal of Fisheries and Aquatic sciences, 41: 497¬501.
- [4]. Carlson R.E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22:361-369.
- [5]. Chiang C., Craft C.B., Rogers D.W. & Richardson C.J. (2000). Effects of 4 years of nitrogen and phosphorus additions on Everglades plant communities. Aquatic Botany, 68: 61-78. PII: S0304-3770(00)00098-X.
- [6]. Chmara R., Szmeja J. & Banaś K. (2014). Factors controlling the frequency and biomass of submerged vegetation in outwash lakes supplied with surface water or groundwater. Boreal Environment Research, 19: 168-180.
- [7]. Choiński A. (1995). An outline of physical limnology of Poland. Wydawnictwo Naukowe UAM, Poznań, p. 298 (In Polish).
- [8]. Ciecierska A. (2008). Macrophyte-based indices of the ecological state of lakes. Dissertations and monographs. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego 193 p. 202. (In Polish, English summary).
- [9]. Fernandez-Alaez M., Fernandez-Alaez C. & Rodriguez S. (2002). Seasonal changes in biomass of charophytes in shallow lakes in the northwest of Spain. Aquatic Botany, 72: 335-348. PII: S0304-3770(01)00209-1.
- [10]. Gąbka M. 2009: Charophytes of the Wielkopolska region (NM Poland): distribution, taxonomy and autecology. Bogucki Wydawnictwo Naukowe Poznań, p.110.
- [11]. Hermanowicz W., Dojlido J., Dożańska W., Koziorowski B. & Zerbe J. 1999: Physico-chemical examination of water and wastewater. Arkady, Warszawa pp. 556. (In Polish).
- [12]. Joniak T., Kuczyńska-Kippen N. & Nagengast B. (2006). Chemistry of waters of small water bodies in the agricultural landscape of the western Wielkopolska region. Teka of the Commission of Protection and Formation of the Natural Environment. 3: 60-65.
- [13]. Kajak Z. (1979). Eutrofizacja jezior. PWN. Warszawa. P. 232.
- [14]. Klimaszyk P. & Heymann D. (2010). Vertical distribution of benthic macroinvertebrates in a meromictic lake (Lake Czarne, Drawieński National Park). Oceanological and Hydrobiological Studies, 39(4): 99-106 DOI: 10.2478/v10009- 010-0048-y.
- [15]. Kłosowski S. (1985). Habitat requirements and bioindicator value of main communities of aquatic vegetation in northeast Poland. Polish Archives of Hydrobiology, 32, 1: 7-29.
- [16]. Kłosowski S. & Jabłonska E. (2009). Aquatic and swamp plant communities as indicators of habitat properties of astatic water bodies in north-eastern Poland. Limnologica, 39: 115¬127. D0I:10.1016/j.limno.2008.01.003.
- [17]. Kłosowski S. & Kłosowski G. (2001). Aquatic and swamp plants. Multico Oficyna Wydawnicza Warszawa. p. 335 (In Polish).
- [18]. Kłosowski S. (2006). Methods of identification of communities and analyze their ecological amplitude. In. Szmeja J. (2006). A Quidebook for studying aquatic plants. Wydawnictwo UG Gdańsk. 367-391. (In Polish).
- [19]. Kocur-Bera K. (2012). Hazards identyfication existing in rural areas. Infrastructure and ecology of rural areas, 2(3), 31-43. (In Polish, English summary).
- [20]. Kolada A. (2014). The effect of lake morphology on aquatic vegetation development andchanges under the influence of eutrophication. Ecological Indicators, 38 282- 293. DOI: 10.1016/j.ecolind.2013.11.015.
- [21]. Kolada A. & Ciecierska H. (2008). Methods for lake macrophyte surveying in the light of biological monitoring required by Water Framework Directive. Environmental Protection and Natural Resources, 37: 9-2 (In Polish, English summary).
- [22]. Kraska M., Piotrowicz R. & Radziszewska R. (1999). Dystrophication as the chief factor of changes in the physicochemical properties of water and vegetation of lobelian lakes of the Bory Tucholskie National Park (NW Poland). Acta Hydrobiol., 41, 6, 127-135.
- [23]. Kuczyńska-Kippen N. (2014). Environmental variables of small mid-field water bodies and the presence of Rotifera groups of different ecological requirements. Polish Journal of Environmental Studies, 23/2:373-378.
- [24]. Kuczyńska-Kippen N. & Basińska A. (2014). Habitat as the most important influencing factor for the rotifer community structure at landscape level. International Review of Hydrobiology, 99/1: 58-64.
- [25]. Kuczyńska-Kippen N. & Nagengast B. (2006). The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of Rotifer and Cladoceran communities. Hydrobiologia, 559: 203-212. DOI 10.1007/ s10750-005-0867-0.
- [26]. Kuczyńska-Kippen N., Nagengast B. & Joniak T. (2009). The impact of biometric parameters of a hydromacrophyte habitat on the structure of zooplankton communities in various types of small water bodies. Oceanological and Hydrobiological Studies, 38(2): 99-108. DOI 10.2478/v10009- 009-0026-4.
- [27]. Kuczyńska-Kippen N. & Wiśniewska M. (2011). Environmental Predictors of Rotifer Community Structure in Two Types of Small Water Bodies. International Review of Hydrobiology, 96/4: 397-404.
- [28]. Lampert W & Sommer U. (2001). Freshwater ecology. Wydawnictwo Naukowe PWN. p. 416.
- [29]. Liffen T., Gurnell A.M. & O’Hare M.T. (2013). Profiling the below ground biomass of an emergent macrophyte using an adapted in growth core method. Aquatic Botany, 110 97-102. DOI: 10.1016/j.aquabot.2013.05.008.
- [30]. Lorens B. & Sugier P. (2010). Changes in the spatial structure of submerged macrophytes in Lake Rotcze (Łęczna-Włodawa Lakeland). Oceanological and Hydrobiological Studies, 39/4:65-73.
- [31]. Nagengast B. & Kuczyńska-Kippen N. (2008). Biometric parameters of various macrophyte species in Lake Wielkowiejskie: the impact of season and chemical variables. Teka Commission of Protection and Formation of Natural Environment 5a: 80-88.
- [32]. O’Hare M.T., Clarke R.T., Bowes M.J., Cailes C., Henville P., Bissett N., McGahey C. & Neal M. (2010). Eutrophication impacts on a river macrophyte. Aquatic Botany, 92: 173-178. DOI:10.1016/j.aquabot.2009.11.001.
- [33]. Pełechaty M. (2004). Can reed stands be good indicators of environmental conditions of the lake littoral? A synecological investigation of Phragmites australis - dominated phytocoenoses. Polish Journal of Environmental Studies, 13: 177-183.
- [34]. Pinowska A. (2002): Effects of snail grazing and nutrient release on growth of the macrophytes Ceratophyllum demersum and Elodea canadensis and the filamentous green alga Cladophora sp. Hydrobiologia, 479: 83-94.
- [35]. Scheffer M. (2001a). Alternative attractors of shallow lakes. The Scientific World 1: 254-263.
- [36]. Scheffer M. (2001b). Ecology of Shallow Lakes. Kluwer Academic Publishers. Dordrecht, Boston, London.
- [37]. Scheffer M., Hosper S.H., Meijer M.L, Moss B. & Jeppesen E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology and Evolution, 8: 275-279.
- [38]. Siebielec G., Smreczak B., Klimkowicz-Pawlas A., Maliszewska- Kordybach B., Terelak H. et al. (2012). Monitoring the chemistry of arable soils in Poland in 2010-2012. Institute of Soil Science and Plant Cultivation. p. 202.
- [39]. Søndergaard M., Jeppesen E. & Jensen J.P. (2005). Pond or lake: does it make any difference? Archiv fur Hydrobiologii, 162: 143-165.
- [40]. Szmeja J. (2006). A Quidebook for studying aquatic plants. Wydawnictwo UG Gdańsk.p. 467 (In Polish).
- [41]. Tanaka N., Asaeda T., Hasegawa A. & Tanimoto K. (2004). Modelling of the long-term competition between Typha angustifolia and Typha latifolia in shallow water— effects of eutrophication, latitude and initial advantage of belowground organs. Aquatic Botany, 79: 295-310. DOI:10.1016/j. aquabot.2004.03.001.
- [42]. Tomaszewicz H. 1979: Aquatic and rushes vegetation in Polish (Classes. Lemnetea, Charetea, Potamogetonetea, Phrgmitetea) Dissertations. University of Warsaw 160: 1-324. (In Polish).
- [43]. Urbaniak J. & Gąbka M. (2014). Polish Charophytes an illustrated guide to identification. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu p. 120.
- [44]. Valley R.D. & Drake M.T. (2007). What does resilience of a clear-water state in lakes mean for the spatial heterogeneity of submersed macrophyte biovolume? Aquatic Botany, 87: 307-319. DOI:10.1016/j.aquabot.2007.07.003.
- [45]. van Zuidam J.P. & Peeters E.T.H.M. (2012). Cutting affects growth of Potamogeton lucens L. and Potamogeton compressus L. Aquatic Botany, 100: 51- 55. DOI:10.1016/j.aquabot.2012.02.005.
- [46]. Vestergaard 0. & Sand-Jensen K. (2000). Alkalinity and trophic state regulate aquatic plantdistribution in Danish lakes. Aquatic Botany, 67: 85-107.
- [47]. Vis C., Hudon C. & Carignan R. (2003). An evaluation of approaches used to determine the distribution and biomass of emergent and submerged aquatic macrophytes over large spatial scales. Aquatic Botany, 77 187-201. doi:10.1016/ S0304-3770(03)00105-0.
- [48]. Wingfield R., Murphy K.J. & Gaywood M. (2006). Assessing and predicting the success of Najas flexilis (Willd.) Rostk. & Schmidt, a rare European aquatic macrophyte, in relation to lake environmental conditions. Hydrobiologia, 570: 79-86. DOI 10.1007/s10750-006-0165-5.
- [49]. Wood K.A., Stillman R.A., Clarke R.T., Daunt F. & O’Hare M.T. (2012). Measuring submerged macrophyte standing crop in shallow rivers: A test of methodology. Aquatic Botany, 102: 28- 33. DOI: 10.1016/j.aquabot.2012.04.006.
- [50]. Xiao K., Yu D. & Wu Z. (2007). Differential effects of water depth and sediment type on clonal growth of the submersed macrophyte Vallisneria natans. Hydrobiologia 589:265-272. DOI 10.1007/s10750-007-0740-4.
- [51]. Zhu B., Mayer C.M., Rudstam L.G., Mills E.L. & Ritchie M.E. (2008). A comparison of irradiance and phosphorus effects on the growth of three submerged macrophytes. Aquatic Botany, 88 :358-362. DOI:10.1016/j.aquabot.2008.01.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-340a79f8-bae0-42bb-8f28-1fa9294b57d9