PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Firefly algorithm optimization of manipulator robotic control based on fast terminal sliding mode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a new algorithm of optimization in the field of manipulator robotic control is presented. The proposed control approach is based on fast terminal sliding mode control (FTSMC), in order to guarantee the convergence of the position articulations errors to zero in finite time without chattering phenomena, and the Firefly algorithm in order to generate the optimal parameters that ensure minimum reaching time and mean square error and achieve better performances. This ensures the asymptotic stability of the system using a Lyapunov candidate in the presence of disturbances. The simulations are applied on a two-link robotic manipulator with different tracking references by using Matlab/ Simulink. Results show the efficiency and confirm the robustness of the proposed control strategy.
Twórcy
autor
  • Industrial Engineering Department, University Abbès Laghrour, Khenchela, Advanced Electronic Laboratory, University of Batna 2, Algeria
autor
  • Industrial Engineering Department, University Abbès Laghrour, Khenchela, Algeria
  • Advanced Electronic Laboratory, University of Batna 2, Batna, Algeria
  • Electronics Department, University of Batna 2, Batna, Algeria
Bibliografia
  • [1] Yin, Meng, et al., “Mechanism and position tracking control of a robotic manipulator actuated by the tendon-sheath,” Journal of Intelligent & Robotic Systems, vol.100, no.3, 2020, pp. 849-862. DOI: 10.1007/s10846-020-01245-6
  • [2] B. Xiao, S. Yin, and O. Kaynak, “Tracking control of robotic manipulators with uncertain kinematics and dynamics,” IEEE Transactions on Industrial Electronics, vol. 63, no. 10, 2016, pp. 6439-6449. DOI: 10.1109/TIE.2016.2569068
  • [3] I. Cervantes and J. Alvarez-Ramirez, “On the PID tracking control of robot manipulators,” Syst. Control Lett, vol. 42, no. 1, 2001, pp. 37-46. DOI:10.1016/S0167-6911(00)00077-3
  • [4] Y. Su, P. C. Müller and C. Zheng, “Global asymptotic saturated PID control for robot manipulators,” IEEE Trans. Control Syst. Technol, vol. 18, no. 6, 2010, pp. 1280-1288. DOI: 10.1109/TCST.2009.2035924
  • [5] A. Codourey, “Dynamic modeling of parallel robots for computed-torque control implementation,” Int. J. Robot. Res, vol. 17, no. 12, 1998, pp. 1325-1336. DOI: 10.1177/027836499801701205
  • [6] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,” Int. J. Robot. Res, vol. 6, no. 3, 1987, pp. 49-59. DOI: 10.1177/027836498700600303
  • [7] G. Tao., Adaptive Control Design and Analysis, Hoboken, NJ, USA:Wiley, vol. 37, 2003.
  • [8] K. D. Young and Ü. Özgüner., Variable Structure Systems Sliding Mode and Nonlinear Control, London, U.K.:Springer, vol. 247, 1999. DOI: 10.1007/BFb0109967
  • [9] C. Edwards, E. F. Colet, L. Fridman, E. F. Colet and L. M. Fridman., Advances in Variable Structure and Sliding Mode Control, Berlin, Germany:Springer, vol. 334, 2006. DOI: 10.1007/11612735
  • [10] Hu, Qinglei, Liang Xu, and Aihua Zhang, “Adaptive backstepping trajectory tracking control of robot manipulator,” Journal of the Franklin Institute, vol. 349, no. 3, 2012, pp. 1087-1105. DOI: 10.1016/j.jfranklin.2012.01.001
  • [11] PARK, S. H. et HAN, S. I, “Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller,” IET control theory & applications, vol. 5, no.12, 2011, pp. 1397-1417. DOI: 10.1049/iet-cta.2010.0460
  • [12] Ho, H. F., Yiu-Kwong Wong, and Ahmad B. Rad, “Robust fuzzy tracking control for robotic manipulators,” Simulation Modelling Practice and Theory, vol.15, no.7, 2007, pp. 801-816. DOI: 10.1016/j.simpat.2007.04.008
  • [13] Wai, Rong-Jong. “Tracking control based on neural network strategy for robot manipulator,” Neurocomputing, vol. 51, 2003, pp. 425-445.DOI: 10.1016/S0925-2312(02)00626-4
  • [14] KANAYAMA, Y., KIMURA, Y., MIYAZAKI, F. and NOGUCHI, T, “A Stable Tracking Control Method for an Autonomous Mobile Robot,” IEEE Conf. Robotics and Automation, Cincinnati, 1990, pp. 384-389. DOI: 10.1109/ROBOT.1990.126006
  • [15] Bao, Jialei, Huanqing Wang, and Peter Xiaoping Liu, “Adaptive finite‐time tracking control for robotic manipulators with funnel boundary,” International Journal of Adaptive Control and Signal Processing, vol.34, no.5, 2020, pp. 575-589. DOI: 10.1002/acs.3102
  • [16] Razmjooei, Hamid, et al., “A novel robust finite-time tracking control of uncertain robotic manipulators with disturbances,” Journal of Vibration and Control, vol.28, no.5-6, 2022, pp. 719-731. DOI: 10.1177/1077546320982449
  • [17] Su, Yuxin, and Chunhong Zheng. “Global finite-time inverse tracking control of robot manipulators,” Robotics and Computer-Integrated Manufacturing, vol.27, no.3, 2011, pp. 550-557. DOI: 10.1016/j.rcim.2010.09.010
  • [18] Akkar, Hanan AR, and Suhad Qasim G. Haddad, “Design Stable Controller for PUMA 560 Robot with PID and Sliding Mode Controller Based on PSO Algorithm,” International Journal Intelligent Engineering System, vol.13, no.6, 2020, pp. 487-499. DOI: 10.22266/ijies2020.1231.43
  • [19] Hashem Zadeh, Seyed Mohammad, et al., “Optimal sliding mode control of a robot manipulator under uncertainty using PSO,” Nonlinear Dynamics, vol. 84, no.4, 2016, pp. 2227-2239. DOI: 10.1007/s11071-016-2641-4
  • [20] You, Ki Sung, Min Cheol Lee, and Wan Suk Yoo, “Sliding Mode controller with sliding perturbation observer based on gain optimization using genetic algorithm,” KSME International Journal, vol.18, no.4, 2004, pp. 630-639. DOI: 10.1007/BF02983647
  • [21] Boukadida, Wafa, Anouar Benamor, and Hassani Messaoud, “Multi-objective design of optimal sliding mode control for trajectory tracking ofSCARA robot based on genetic algorithm,” Journal of Dynamic Systems, Measurement, and Control, vol.141, no.3, 2019. DOI: 10.1115/1.4041852
  • [22] Loucif, Fatiha, and Sihem Kechida, “Sliding mode control with pid surface for robot manipulator optimized by evolutionary algorithms,” Recent Advances in Engineering Mathematics and Physics. Springer, Cham, 2020, pp. 19-32. DOI: 10.1007/978-3-030-39847-7_2
  • [23] Rahmani, Mehran, Hossein Komijani, and Mohammad Habibur Rahman. “New sliding mode control of 2-DOF robot manipulator based on extended grey wolf optimizer,” International Journal of Control, Automation and Systems, vol.18, no.6, 2020, pp. 1572-1580. DOI: 10.1007/s12555-019-0154-x
  • [24] Yang, Xin-She, Nature-inspired metaheuristic algorithms. Luniver press, 2010. [25] Park, Kang-Bark, and Teruo Tsuji, “Terminal sliding mode control of second-order nonlinear uncertain systems,” International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, vol.9, no.11, 1999, pp. 769-780. DOI : 10.1002/(SICI) 1099-1239
  • [25] Park, Kang-Bark, and Teruo Tsuji, “Terminal sliding mode control of second-order nonlinear uncertain systems,” International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, vol.9, no.11, 1999, pp. 769-780. DOI : 10.1002/(SICI) 1099-1239
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3408bdb0-31fb-4078-bd40-5e49637d0eaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.