PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A convolutional neural network-based method of inverter fault diagnosis in a ship’s DC electrical system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multi-energy hybrid ships are compatible with multiple forms of new energy, and have become one of the most important directions for future developments in this field. A propulsion inverter is an important component of a hybrid DC electrical system, and its reliability has great significance in terms of safe navigation of the ship. A fault diagnosis method based on one-dimensional convolutional neural network (CNN) is proposed that considers the mutual influence between an inverter fault and a limited ship power grid. A tiled voltage reduction method is used for one-to-one correspondence between the inverter output voltage and switching combinations, followed by a combination of a global average pooling layer and a fully connected layer to reduce the model overfitting problem. Finally, fault diagnosis is verified by a Softmax layer with good anti-interference performance and accuracy.
Słowa kluczowe
Rocznik
Tom
Strony
105--114
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Merchant Marine College Shanghai Maritime University China
autor
  • Merchant Marine College Shanghai Maritime University China
autor
  • Merchant Marine College Shanghai Maritime University China
Bibliografia
  • 1. Yupeng Yuan, Jixiang Wang, Xinping Yan, Boyang Shen, Teng Long, “A review of multi-energy hybrid power system for ships,” Renewable and Sustainable Energy Reviews, vol. 132, p. 10081, 2020, https://doi.org/10.1016/j. rser.2020.110081.
  • 2. M. Kunicka and W. Litwin, “Energy efficient small inland passenger shuttle ferry with hybrid propulsion—Concept design, calculations and model tests,” Polish Marit. Res., vol. 26, no. 2, 2019, doi: 10.2478/pomr-2019-0028.
  • 3. IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships, IEEE Std 1709-2018 (Revision of IEEE Std 1709-2010), pp. 1-54, 2018, doi: 10.1109/IEEESTD.2018.8569023.
  • 4. N. Bennabi, J. F. Charpentier, H. Menana, J. Y. Billard and P. Genet, “Hybrid propulsion systems for small ships: Context and challenges,” 2016 XXII International Conference on Electrical Machines (ICEM), 04-07 September 2016, Lausanne, Switzerland, pp. 2948-2954, doi: 10.1109/ ICELMACH.2016.7732943.
  • 5. N. Bayati and M. Savaghebi, “Protection systems for DC shipboard microgrids,” Energies, vol. 14, p. 5319, 2021, https://doi.org/10.3390/en14175319.
  • 6. K. Satpathi, A. Ukil, and J. Pou, “Short-circuit fault management in DC electric ship propulsion system: Protection requirements, review of existing technologies and future research trends,” IEEE Transactions on Transportation Electrification, vol. 4, no. 1, pp. 272-291, March 2018, doi: 10.1109/TTE.2017.2788199.
  • 7. M. Wu and M. Collier, “Extending the lifetime of heterogeneous sensor networks using a two-level topology,” in 2011 IEEE 11th International Conference on Computer and Information Technology, 31 August 2011 - 02 September 2011, Pafos, pp. 499-504, doi: 10.1109/CIT.2011.64.
  • 8. H. Yang, T. Wang and Y. Tang, “A Hybrid Fault-Tolerant Control Strategy for Three-phase Cascaded Multilevel Inverters Based on Half-bridge Recombination Method,” IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society,13-16 October 2021, Toronto, ON, Canada,pp. 1-6, doi: 10.1109/IECON48115.2021.9589527.
  • 9. H. -d. Liu, J. -y. Han, N. -j. Shen and H. Lan, “Rectifier Power Thyristor Failure in Real-Time Detection Methods,” 2012 Asia-Pacific Power and Energy Engineering Conference, 27-29 March 2012, Shanghai, China, pp. 1-4, doi: 10.1109/ APPEEC.2012.6307672.
  • 10. P. Sobanski and M. Kaminski, “Application of artificial neural networks for transistor open-circuit fault diagnosis in three-phase rectifiers,” IET Power Electronics, vol. 12, pp. 2189-2200, 2019, https://doi.org/10.1049/iet-pel.2018.5330.
  • 11. M. Yaghoubi, et al., “IGBT open-circuit fault diagnosis in a quasi-Z-source inverter,” IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 2847-2856, 2019.
  • 12. J. K. Nøland, F. Evestedt, and U. Lundin, “Failure modes demonstration and redundant postfault operation of rotating thyristor rectifiers on brushless dual-star exciters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 842-851, Feb. 2019, doi: 10.1109/TIE.2018.2833044.
  • 13. J. Lamb and B. Mirafzal, “Open-circuit IGBT fault detection and location isolation for cascaded multilevel converters,” IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4846-4856, June 2017, doi: 10.1109/TIE.2017.2674629.
  • 14. J. A. Reyes-Malanche, F. J. Villalobos-Pina, E. Cabal-Yepez, R. Alvarez-Salas, and C. Rodriguez-Donate, “Open-circuit fault diagnosis in power inverters through currents analysis in time domain,” IEEE Trans. Instrum. Meas., vol. 70, p. 3517512, 2021.
  • 15. G. Yan, Y. Hu, and J. Jiang, “A novel fault diagnosis method for marine blower with vibration signals,” Polish Maritime Research, vol. 29, no. 2, pp. 77-86, 2022, https:// doi.org/10.2478/pomr-2022-0019.
  • 16. G. Jin, T. Wang, Y. Amirat, Z. Zhou, and T. Xie, “A layering linear discriminant analysis-based fault diagnosis method for grid-connected inverter,” Journal of Marine Science and Engineering, vol. 10, no. 7, p. 939, 2022, https://doi. org/10.3390/jmse10070939.
  • 17. S. Zhang, R. Wang, Y. Si, and L. Wang, “An improved convolutional neural network for three-phase inverter fault diagnosis,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-15, 2022, art. no. 3510915, doi: 10.1109/TIM.2021.3129198.
  • 18. M. Fahad, M. Alsultan, S. Ahmad, A. Sarwar, M. Tariq, and I. A. Khan, “Reliability analysis and fault-tolerant operation in a multilevel inverter for industrial application,” Electronics, vol. 11, no. 1, p. 98, 2022, https://doi.org/10.3390/ electronics11010098.
  • 19. W. Gong, H. Chen, Z. Zhang, M. Zhang, and H. Gao, “A data-driven-based fault diagnosis approach for electrical power DC-DC inverter by using modified convolutional neural network with global average pooling and 2-D feature image,” IEEE Access, vol. 8, pp. 73677-73697, 2020, doi: 10.1109/ACCESS.2020.2988323.
  • 20. H. Long, M. Ma, W. Guo, F. Li and X. Zhang, “Fault Diagnosis for IGBTs Open-Circuit Faults in Photovoltaic Grid-Connected Inverters Based on Statistical Analysis and Machine Learning,” 2020 IEEE 1st China International Youth Conference on Electrical Engineering (CIYCEE), 01-04 November 2020, Wuhan, China ,pp. 1-6, doi: 10.1109/ CIYCEE49808.2020.9332538.
  • 21. D. Xie and X. Ge, “A Simple Diagnosis Approach for Multiple IGBT Faults in Cascaded H-Bridge Multilevel Converters,” 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 11-15 October 2020, Detroit, MI, USA,pp. 5283- 5288, doi: 10.1109/ECCE44975.2020.9235463.
  • 22. P. Geng, X. Xu, and T. Tarasiuk, “State of charge estimation method for lithium-ion batteries in all-electric ships based on LSTM neural network,” Polish Marit. Res., vol. 27, no. 3, 2020, doi: 10.2478/pomr-2020-0051.
  • 23. T. Wang, H. Xu, J. Han, E. Elbouchikhi, and M. E. H. Benbouzid, “Cascaded H-bridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7006-7018, Dec. 2015, doi: 10.1109/TPEL.2015.2393373.
  • 24. J. Jiao, M. Zhao, J. Lin, and K. Liang, “A comprehensive review on convolutional neural network in machine fault diagnosis,” Neurocomputing, vol. 417, pp. 36-63, 2020, https://doi.org/10.1016/j.neucom.2020.07.088.
  • 25. Y. Wang, C. Bai, X. Qian, W. Liu, C. Zhu, and L. Ge, “A DC series arc fault detection method based on a lightweight convolutional neural network used in photovoltaic system,” Energies, vol. 15, no. 8, pp. 2877, 2022, https:// doi.org/10.3390/en15082877.
  • 26. X. Wang, B. Yang, Z. Wang, Q. Liu, C. Chen, and X. Guan, “A compressed sensing and CNN-based method for fault diagnosis of photovoltaic inverters in edge computing scenarios,” IET Renew. Power Gener., vol. 16, pp. 1434- 1444, 2022, https://doi.org/10.1049/rpg2.12383.
  • 27. U. Choi, J. Lee, F. Blaabjerg, and K. Lee, “Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter,” IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7234-7247, Oct. 2016, doi: 10.1109/ TPEL.2015.2510224.
  • 28. M. Kumar, “Open circuit fault detection and switch identification for LS-PWM H-bridge inverter,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1363-1367, April 2021, doi: 10.1109/ TCSII.2020.3035241.
  • 29. K.-H. Chao and Y.-R. Shen, “Application of an extension neural network method for fault diagnosis of three-level inverters used in marine vessels,” Journal of Marine Science and Technology, vol. 24, no. 5, Article 8, 2022, doi:10.6119/ JMST-016-0604-1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34087c6b-397e-4214-a81a-68087b9cf176
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.