Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper describes the design of conformal cooling of an aluminium die-casting mold component using numerical simulations along with validation under industrial conditions. The subject of modifications was the insert. The insert comes into direct contact with the metal during the filling of the mold and solidification of the casting and determines the internal shape of the casting. The aim was to optimize the operating temperatures of the insert, reduce thermal stress in the most exposed area, achieve a more even distribution of temperatures in its volume, and maintain the casting quality. Shape modifications were made by topology optimization to reduce the volume of the insert and achieve material savings. 3D printing was chosen as the production technology due to the wider possibilities regarding the variability of the shape of the internal cooling channels. Three geometric designs of the insert were created, and numerical simulations of the temperature field of the mold were carried out in ProCAST software for each variant. Numerical simulations were validated through the temperature field of the mold detected by a thermal camera during the casting cycle. Based on the results, the final design D was selected, for which a complete numerical simulation was performed, including the filling and solidification of the castings. The results were compared with the original variant A. By adjusting the cooling, temperatures were reduced in the most temperature-exposed area of the insert. The new insert variant D showed higher temperatures in the rest of the volume, resulting from material volume reduction. However, the temperatures became even, and the temperature gradients that existed in the original insert variant A were reduced. The simulation also showed that changes in the temperature field of variant D will not negatively affect the quality of the castings. The component will be manufactured and tested in operational conditions in the next research phase.
Czasopismo
Rocznik
Tom
Strony
21--30
Opis fizyczny
Bibliogr. 26 poz., il., tab., wykr.
Twórcy
autor
- Environmental Research Department, Institute of Technology and Business in České Budějovice, Czech Republic
autor
- Environmental Research Department, Institute of Technology and Business in České Budějovice, Czech Republic
autor
- Environmental Research Department, Institute of Technology and Business in České Budějovice, Czech Republic
autor
- Environmental Research Department, Institute of Technology and Business in České Budějovice, Czech Republic
autor
- Environmental Research Department, Institute of Technology and Business in České Budějovice, Czech Republic
autor
- Environmental Research Department, Institute of Technology and Business in České Budějovice, Czech Republic
autor
- Environmental Research Department, Institute of Technology and Business in České Budějovice, Czech Republic
autor
- MOTOR JIKOV Fostron a.s., Tool Shop Division, České Budějovice, Czech Republic
autor
- MOTOR JIKOV Fostron a.s., Tool Shop Division, České Budějovice, Czech Republic
Bibliografia
- [1] Feng, S., Kamat, A.M. & Pei, Y. (2021). Design and fabrication of conformal cooling channels in molds: Review and progress updates. International Journal of Heat and Mass Transfer. 171, 121082, 1-28. DOI: 10.1016/j.ijheatmasstransfer.2021.121082
- [2] Klobčar, D., Tušek, J. & Taljat, B. (2008). Thermal fatigue of materials for die-casting tooling. Materials Science and Engineering: A. 472 (1-2), 198-207. DOI: 10.1016/j.msea.2007.03.025.
- [3] Anand, A., Nagarajan, D., El Mansori, M. & Sivarupan, T. (2023). Integration of additive fabrication with high-pressure die casting for quality structural castings of aluminium alloys; optimising energy consumption. Transactions of the Indian Institute of Metals. 76(2), 347-379. DOI: 10.1007/s12666-022-02750-y.
- [4] Chen, G., Wang, J., Wang, D., Xue, L., Zeng, B. & Qin, B. (2021). Effect of liquid oxy-nitriding at various temperatures on wear and molten aluminum corrosion behaviors of AISI H13 steel. Corrosion Science. 178, 109088. DOI: 10.1016/j.corsci.2020.109088.
- [5] Bhaskar, M., Anand, G., Nalluswamy, T. & Suresh, P. (2022). Die life in aluminium high-pressure die casting industries. Journal of The Institution of Engineers (India):Series D. 103(1), 117-123. DOI:10.1007/s40033-021-00317-7.
- [6] Andronov, V., Beránek, L., Zajíc, J., Šotka, P. & Bock, M.(2023).Case study of large three-dimensional-printed slider with conformal cooling for high-pressure die casting. 3D Printing and Additive Manufacturing. 10(4), 587-608. DOI:10.1089/3dp.2022.0225.
- [7] Jarfors, A.E.W., Sevastopol, R., Seshendra, K., Zhang, Q., Steggo, J. & Stolt, R. (2021). On the use of conformal cooling in high-pressure die-casting and semisolid casting. Technologies. 9(2), 39, 1-16. DOI:10.3390/technologies9020039.
- [8] Fiorentini, F., Curcio, P., Armentani, E., Rosso, C. & Baldissera, P. (2019). Study of two alternative cooling systems of a mold insert used in die casting process of light alloy components. Procedia Structural Integrity. 24, 569-582. DOI: 10.1016/j.prostr.2020.02.050.
- [9] Stolt, R., Pour, M.A. & Siafakas, D. (2021). Making additively manufactured cores with conformal tooling directly on a die-base. Procedia Manufacturing. 55, 200-204. https://doi.org/10.1016/j.promfg.2021.10.028.
- [10] Barreiro, P., Armutcu, G., Pfrimmer, S. & Hermes, J. (2022). Quality improvement of an aluminum gearbox housing by implementing additive manufacturing. Forschung im Ingenieurwesen. 86(3), 605-616. DOI: 10.1007/s10010-021-00541-3.
- [11] Shinde, M.S. & Ashtankar, K.M. (2017). Additive manufacturing-assisted conformal cooling channels in mold manufacturing processes. Advances in Mechanical Engineering. 9(5), 1-14. DOI: 10.1177/1687814017699764.
- [12] Armillotta, A., Baraggi, R. & Fasoli, S. (2014). SLM tooling for die casting with conformal cooling channels. The International Journal of Advanced Manufacturing Technology. 71(1-4), 573-583. DOI: 10.1007/s00170-013-5523-7.
- [13] Zeng, T., Abo-Serie, E., Henry, M. & Jewkes, J. (2023). Cooling channel free surface optimisation for additively manufactured casting tools. The International Journal of Advanced Manufacturing Technology. 127(3-4), 1293-1315. DOI: 10.1007/s00170-023-11402-4.
- [14] Karakoc, C., Dizdar, K.C. & Dispinar, D. (2022). Investigation of effect of conformal cooling inserts in high-pressure die casting of AlSi9Cu3. The International Journal of Advanced Manufacturing Technology. 121(11-12), 7311-7323. DOI: 10.1007/s00170-022-09808-7.
- [15] Anglada, E., Meléndez, A., Vicario, I., Arratibel, E. & Aguillo, I. (2015). Adjustment of a high pressure die casting simulation model against experimental data. Procedia Engineering. 135, 966-973. DOI: 10.1016/j.proeng.2015.12.584.
- [16] Norwood, A., Dickens, P., Soar, R., Harris, R., Gibbons, G. & Hansell, R. (2004). Analysis of cooling channels performance. International Journal of Computer Integrated Manufacturing. 17(8), 669-678. DOI: 10.1080/0951192042000237528.
- [17] Piekło, J., Burbelko, A. & Garbacz-Klempka, A. (2022). Shape-dependent strength of Al Si9Cu3FeZn die-cast alloy in impact zone of conformal cooling core. Materials. 15(15), 5133, 1-21. DOI: 10.3390/ma15155133.
- [18] ESI Group. (2024, April). ProCAST. Retrieved April 05, 2024, from https://www.esi-group.com/products/procast.
- [19] ESI Group. (2021, August). ProCAST 2021.0 – User Guide. Retrieved April 05, 2024, from https://myesi.esi-group.com/downloads/software-documentation/procast-2021.0-user-guide-visual-cast-procast-rev-b-online-online-online-online.
- [20] Ingham, D.B., Ma, L. (2005). Fundamental equations for CFD in river flow simulations. In P.D. Bates, S.N. Lane, R.I. Ferguson (Eds.), Computational Fluid Dynamics: Applications in Environmental Hydraulics (pp. 19-50). New Jersey: Wiley.
- [21] Alhendal, Y., Turan, A. (2012). Volume-of-fluid (VOF). In R. Petrova (Eds.), Finite Volume Method - Powerful Means of Engineering Designs (pp. 215-234). Rijeka: InTech.
- [22] Yeoh, G.H., Tu, J. (2019). Computational Techniques for Multiphase Flows. Cambridge: Elsevier. Butterworth-Heinemann.
- [23] Ranade, V.V. (2002) Computational Flow Modeling for Chemical Reactor Engineering. Cambridge: Elsevier.
- [24] Colosio. (2022, October). PFO Series. Retrieved September 6th, 2024, from https://www.colosiopresse.it/docs/PFO_Colosio_Datasheet_EN.pdf
- [25] Uddeholm. (2018, May). Uddeholm Dievar. Retrieved September 3rd, 2024, from https://www.uddeholm.com/app/uploads/sites/216/productdb/api/tech_uddeholm-dievar_en.pdf
- [26] ČSN EN 1706+A1. (2022). Aluminium and aluminium alloys – Castings – Chemical composition and mechanical properties. Prague: Czech Standardization Agency.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34065caa-2e0a-49af-8cda-2af6b69f4772
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.