PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deterministic versus stochastic modelling of unsaturated flow in a sandy field soil based on dual tracer breakthrough data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The 216 km2 Neuenhagen Millcreeck catchment can be characterized as a drought-sensitive landscape in NE Germany. It is therefore of fundamental human interest to understand how water that fell as precipitation moves through the unsaturated soils and recharges groundwater. Additionally, a better knowledge of nutrient transport from soil to groundwater is important, especially in landscapes with light sandy soils. For a better understanding of these processes a dual tracer field experiment with bromide (Br-) and deuterium (D2 O) was carried out some years ago. The aim of the present study is to use the results of this experiment to model tracer transport in the unsaturated zone via two different concepts, the classical deterministic advection-dispersion equation and a new stochastic approach. The advantage of the stochastic modelling method proposed here for field-scale tracer application is to produce reliable information about expected total solute fluxes from the unsaturated zone to groundwater and about mean transit times. Moreover, this allows one to evaluate the mass of solute in the soil profile and to determine the range of water velocity fluctuations. Field experiments should be concentrated on estimation of fluctuation of water flow velocity to make stochastic models more accurate. To summarize, this work contributes to new modelling methods for the simulation of water and solute transport in unsaturated sandy soils which are heavily affected by droughts and irregular hydrological processes in the subsurface.
Rocznik
Strony
art. no. 37
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany
  • Humboldt-University of Berlin, Germany and Geographical Department, Unter den Linden 6, D-10099 Berlin, Germany
  • Institute of Hydroengineering of Polish Academy of Sciences, Koœcierska 7, 80-828 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Amoozegard-Fard, A., Nielsen, D.R., Warrick, A.W., 1982. Soil solute concentration distributions for spatial varying pore-water velocities and apparent diffusion coefficients. Soil Science Society of America Proceeding, 46: 3-8.
  • 2. Bechtold, M., Vanderborght, J., Ippisch, O., Vereecken, H., 2011. Efficient random walk particle trackinggorithm for advective-dispersive transport in media with discontinuous dispersion Coients and water content. Water Resources Research, 47: W10526.
  • 3. Berg, W., Cencur, B., Fank, J., Feichtinger, F., Nützmann, G., Papesch, W., Rajner, V., Rank, D., Schneider, S., Seiler, K.-P., Steiner, K.-H., Stenitzer, E., Stichler, W., Trcek, B., Vargay, Z., Veselic, M., Zojer, H., 2001. Tracers in the unsaturated zone. Beiträge zur Hydrogeologie, 52: 7-102.
  • 4. Berkowitz, B., Scher, H., 1995. On characterization of anomalous dispersion in porous and fractured media. Water Resources Research, 31: 1461-1466.
  • 5. Biggar, J.W., Nielsen, D.R., 1976. Spatial variability of the leaching characteristics of a field soil. Water Resources Research, 12: 78-84.
  • 6. Bromly, M., Hinz, C., 2004. Non-Darcian transport in homogeneous unsaturated repacked sand. Water Resources Research, 40: W07402.
  • 7. Butters, G.L., Jury, W.A., Ernst, F.F., 1989. Field scale transport of bromide in an unsaturated soil 1. Experimental methodology and results. Water Resources Research, 25: 1575-1581.
  • 8. Chan, T.P., Govindaraju, R.S., 2006. A stochastic-advestive transport model for NAPL dissolution and degradation in non-uniform flows in porous media. Journal of Contaminant Hydrology, 87: 253-276.
  • 9. Claes, N., Ginger Paige, G., Parsekian, A.D., 2019. Uniform and lateral preferential flow under flood irrigation at field scale. Hydrological Processes, 33.
  • 10. Cortis, A., Berkowitz, B., 2004. Anomalous transport in “classical” soil and sand columns. Soil Science Society of America Journal, 68: 1539-1548.
  • 11. Dagan, G., Bresler, E., 1979. Solute dispersion in unsaturated heterogeneous soil at field scale, I. Theory. Soil Science Society of America Journal, 43: 461-467.
  • 12. Dirksen, C., Kool, J.B., Koorevaar, P., van Genuchten, M.Th., 1993. HYWASOR - Simulation model of hysteretic water and solute transport in the root zone. In: Water Flow and Solute Transport in Soils (eds. D. Russo and G. Dagan): 99-122. Springer, Berlin.
  • 13. DVWK, 1996. Ermittlung der Verdunstung von Land- und Wasserflächen. Merkblätter zur Wasserwirtschaft, 238.
  • 14. Feddes, R.A., Kowalik, P., Zaradny, H., 1978. Simulation of Field Water Use and the Crop Yield. John Wiley and Sons, New York-Toronto.
  • 15. Feddes, R.A., Hoff, H., Bruen, M., Dawson, T., de Rosnay, P., Dirmeyer, P., Jackson, R.B., Kabat, P., Kleidon, A., Lilly, A., Pitman, A.J,. 2001. Modelling root water uptake in hydrological and climate models. Bulletin of the American Meteorological Society, 82: 2797-2809.
  • 16. Fried, J.J., 1975. Groundwater Pollution. Elsevier Science, New York.
  • 17. Hammel, K., Gross, J.M., Wessolek, G., Roth, K., 1999. Two-dimensional simulation of bromide transport in a heterogeneous field soil with transient unsaturated flow. European Journal of Soil Science, 50: 6333-647.
  • 18. Huang, K., Toride, N., van Genuchten, M.Th., 1995. Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns. Transport in Porous Media, 18: 283-302.
  • 19. Jaynes, D.B., Bowman, R.C., 1988. Transport of conservative tracer in the field under continuous flood irrigation. Soil Science Society of America Journal, 52: 618-624.
  • 20. Jiménez-Martínez, J., Alcolea, A., Straubhaar, J.A., Renard, P., 2020. Impact of phases distribution on mixing and reactions in unsaturated porous media. Advances in Water Resources, 144: 103697.
  • 21. Jury, W.A., Fluehler, H., 1992. Transport of chemi cals through soils: Mechanisms, models and field applications. Advances in Agronomy, 47: 141-201.
  • 22. Kutilek, M. , Nielsen, D.R. 1994. Soil Hydrology. Cremlingen - Destect, Catena-Verlag.
  • 23. Li, X., Wen, Z., Zhan, H., Wu, F., Qi Zhu, Q., 2021. Laboratory observations for two-dimensional solute transport in an aquifer-aquitard system. Environmental Science and Pollution Research, 28: 38664-38678.
  • 24. Moroni, M., Kleinfelter, N., Cushman, H., 2007. Analysis of dispersion in porous media via matched-index particle tracking velocimetry experiments. Advances in Water Resources, 30: 1-15.
  • 25. Nichol, C., Smith, L., Beckie, R., 2005. Field-scale experiments of unsaturated flow and solute transport in a heterogeneous porous medium. Water Resources Research, 41: W05018.
  • 26. Nützmann, G., Maciejewski, S., 2002. Modelling studies for determining unsaturated flow components in a sandy soil during dual tracer test. Developments in Water Science, 47: 33-40.
  • 27. Nützmann, G., Tischner, T., 2000. Phosphorverlagerung im Boden: physikochemische und hydrologische Einflüsse. Mitteilungen Deutsche Bodenkundliche Gesellschaft, 92: 182-185.
  • 28. Nützmann, G., Maciejewski, S., Joswig, K., 2002. Estimation of water saturation dependence of dispersion in unsaturated porous media: experiments and modeling analysis. Advances in Water Resources, 25: 565-576.
  • 29. Pachepsky, Y., Benson, D., Rawls, R., 2000. Simulating scale-dependent contaminant transport in soils with the fractional advective-dispersive equation. Soil Science Society of America Journal, 64: 1234-1243.
  • 30. Raimbault, J., Peyneau, P.-E., Courtier-Murias, D., Bigot, T., Roca, J.G., Bechet, B., Lassabatere, L., 2021. Investigating the impact of exit effects on solute transport in macroporous media. Hydrology and Earth System Sciences, European Geosciences Union, 25: 671-683.
  • 31. Siliman, S.E., Simpson, E.S., 1987. Laboratory evidence of the scale effect in dispersion of solutes in porous media. Water Resources Research, 23: 1667-1673.
  • 32. Simunek, J., Sejna, M., van Genuchten, M.T., 2005. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat and multiple solutes in variably-saturated media, Riverside, California.
  • 33. Tilahun, K., Botha, J.F., Bennie, A.T.P., 2005. Transport of bromide in the Bainsvlei soil: field experiment and deterministic/stochastic model simulation. I. Continuous water application. Australian Journal of Soil Research, 43: 73-80.
  • 34. Tischner, T., 2000. Untersuchungen zur Phosphatverlagerung und Phosphatbindung im Boden und Grundwasser einer landwirtschaftlich genutzten Fläche. Bodenökologie und Bodengenese, (33): 187.
  • 35. Toride, N., Leij, F.J., 1996a. Convective-dispersive stream tube model for field scale solute transport: I. Moment analysis. Soil Science Society of America Journal, 60: 342-352.
  • 36. Toride, N., Leij, F.J., 1996b. Convective-dispersive stream tube model for field scale solute transport: I. Moment analysis. Soil Science Society of America Journal, 60: 352-361.
  • 37. Wessolek, G., Gross, J.M., Hammel, K., 2000. Water and bromide transport in heterogeneous glacial sand. Journal of Plant Nutrition and Soil Science, 163: 13-20.
  • 38. Xiong, Y., Huang, G., Huang, Q., 2006. Modeling solute transport in one-dimensional homogeneous and heterogeneous soil columns with continuous time random walk. Journal of Contaminant Hydrology, 86: 163-175.
  • 39. Yeh, T.C.J., 1987. Comment on “Modeling of-scale dependend dispersion in hydrogeologic systems.” By J. F. Pickens and G. E. Grisak. Water Resources Research, 23: 522.
  • 40. Zhang, W.J., Xu, X.-B., 2020. Experimental study on migration of chloride ion and cadmium ion in unsaturated soil. Journal of Environmental Geotechnics. Published online: https://doi.org/10.1680/jenge.20.00014.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3402d5ae-7ff2-429b-9eaa-08c94ef80b7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.