PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of a Directional Dependenceon Mechanical Properties of Composites Reinforced with Chopped Carbon Fibre Produced by Additive Manufacturing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Progress in the industry is accompanied by the development of new materials and more efficient technological production processes. At present, additive production is becoming very attractive in all industries (research, development, production), which brings a number of advantages compared to subtractive methods (customization, production speed, control of material properties by users, etc.). The main advantage of 3D printing is the controlled deposition of material in defined places. Instead of demanding manual labour, fully automated production via computers leads to the manufacturing of complex components from materials whose production in conventional ways would be problematic or even impossible. Because these are new technologies, the main direction of research at present is to identify the basic physical properties of these materials under different types of loading. The main goal of this article is to observe the dependence of the behaviour of the extruded material (thermoplastic reinforced with chopped carbon fibre) on the printing parameters (thickness of the lamina, the orientation of the fibres of the printed material, etc.). Based on published scientific works, it appears that these settings have a significant impact on the achieved physical properties. This is the reason why the authors decided to analyze the influence of these parameters on the basis of processed data from experimental measurements of mechanical properties in the MATLAB program. As this is FFF printing, an essential condition is to identify and specify the directional dependence of the behavior of the printed material. This physical phenomenon is a necessary condition for gradual knowledge for the purposes of a subsequent mathematical description of the material properties. According to the authors, for the purposes of modeling these materials in FEM-based programs, it is essential to define the directional dependence in the plane of the lamina.
Twórcy
  • University of Žilina, Faculty of Mechanical Engineering, Department of Applied Mechanics, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Applied Mechanics, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
  • University of Žilina, Faculty of Mechanical Engineering, Department of Applied Mechanics, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
  • University of Žilina, Faculty of Mechanical Engineering, Department of Applied Mechanics, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
  • University of Žilina, Faculty of Mechanical Engineering, Department of Applied Mechanics, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Applied Mechanics, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering, Department of Applied Mechanics, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
Bibliografia
  • [1] G.D. Goh, V. Dikshit, A.P. Nagalingam, G.L. Goh, S. Agarwala, S.L. Sing, J. Wei, W.Y. Yeong, Materials & Design 137, 79-89 (2018). DOI: https://doi.org/10.1016/j.matdes.2017.10.021
  • [2] S.M.F. Kabir, K. Mathur, A.M. Seyam, Composite Structures 232. DOI: https://doi.org/10.1016/j.compstruct.2019.111476
  • [3] G.D. Goh, W. Toh, Y.L. Yap, T.Y. Ng, W.Y. Yeong, Composites Part B: Engineering. DOI: https://doi.org/10.1016/j.compositesb.2021.108840 (in press)
  • [4] E.C. Botelho, R.A. Silva, L.C. Pardini, M.C. Rezende, Mat. Res. 9 (3), 247-256 (2006). DOI: https://doi.org/10.1590/S1516-14392006000300002
  • [5] P. Dunaj, S. Berczyński, K. Miądlicki, I. Irska, B. Niesterowicz, Materials 13. DOI: https://doi.org/10.3390/ma13092125
  • [6] J.C. André, From additive manufacturing to 3D/4D printing 1, ISTE Ltd., London (2017).
  • [7] P. Krawiec, D. Czarnecka-Komorowska, Ł. Warguła, S. Wojciechowski, Materials 14. DOI: https://doi.org/10.3390/ma14071682
  • [8] A. Unkovskiy, F. Schmidt, F. Beuer, P. Li, S. Spintzyk, P. Kraemer Fernandez, J. Clin. Med. DOI: https://doi.org/10.3390/jcm10051070
  • [9] I. Rojek, D. Mikołajewski, E. Dostatni, M. Macko, Materials 13. DOI: https://doi.org/10.3390/ma13235437
  • [10] S.S. Crump, Apparatus and method for creating three-dimensional objects, United States patent, US5121329A, 1989.
  • [11] G. Mark, et al. Three dimensional printer with composite filament fabrication, United States patent, US9156205B2.
  • [12] J.R.C. Dizon, A.H. Espera, Q. Chen, R.C. Advincula, Additive Manufacturing 20, 44-67 (2018). DOI: https://doi.org/10.1016/j.addma.2017.12.002
  • [13] S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Progress in Materials Science. DOI: https://doi.org/10.1016/j.pmatsci.2021.100795 (in press)
  • [14] M. Šofer, J. Cienciala, M. Fusek, P. Pavlíček, R. Moravec, Materials 14. DOI: https://doi.org/10.3390/ma14040786
  • [15] D.D.L. Chung, Composite materials - Science and applications, 2nd ed., Springer Science & Business Media, New York (2010).
  • [16] G.W. Melenka, B.K.O. Cheung, J.S. Schofield, M.R. Dawson, J.P. Carey, Composite Structures 153, 866-875 (2016). DOI: https://doi.org/10.1016/j.compstruct.2016.07.018
  • [17] M. Araya-Calvo, I. López-Gómez, N. Chamberlain-Simon, J.L. León-Salazar, T. Guillén-Girón, J.S. Corrales-Cordero, O. Sánchez-Brenes, Additive Manufacturing 22. 157-164 (2018). DOI: https://doi.org/10.1016/j.addma.2018.05.007
  • [18] M. Vaško, M. Sága, J. Majko, A. Vaško, M. Handrik, Materials 13. DOI: https://doi.org/10.3390/ma13245654
  • [19] A.D. Pertuz, S. Díaz-Cardona, O. Andrés González-Estrada, Int. J. of Fatigue 130. DOI: https://doi.org/10.1016/j.ijfatigue.2019.105275
  • [20] P. Pavlíček, F. Fojtík, M. Fusek, Testing Carbon Fibers for 3D Printing. Proceedings of 58th International Scientific conference on Experimental Stress Analysis 2020, VSB-Technical University of Ostrava, Czech Republic, October 19 October 22, 2020. 382-386. ISBN978-80-248-4451-0
  • [21] P. Marsalek, M. Sotola, D. Rybansky, V. Repa, R. Halama, M. Fusek, J. Prokop, Materials 14. DOI: https://doi.org/10.3390/ma14010140
  • [22] S.H. Sanei, A. Arndt, R. Doles, Journal of Composite Materials 54 (20), 2687-2695 (2020). DOI: https://doi.org/10.1177/0021998320902510
  • [23] ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, 2014. Available at: www.astm.org
  • [24] Markforged. Available online: https://markforged.com/ (accessed on 5 November 2020).
Uwagi
This work has been supported by KEGA 054ŽU-4/2021. This publication is the result of support under the Operational Program Integrated Infrastructure for the project: Strategic implementation of additive technologies to strengthen the intervention capacities caused by the COVID-19 pandemic, ITMS code: 313011ASY4, co-financed by the European Regional Development Fund.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33fd6e06-85bc-44a7-816a-7e959d2b6f1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.