Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Konferencja
Seventh International Conference on Research in Intelligent and Computing in Engineering
Języki publikacji
Abstrakty
This article provides a new way for classifying heart disease. A classifier using a controller for brain emotional learning and a fuzzy system is presented. The controller's parameter updating laws are built using the gradient descent method. The method's convergence and stability are ensured by the Lyapunov function. Using the heart disease dataset from the University of California, Irvine (UCI), the performance of the system is examined. In addition, a comparison with different classifiers is provided. The outcomes of our experiments illustrate the efficacy of our strategy.
Rocznik
Tom
Strony
33--36
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wykr.
Twórcy
autor
- Faculty Electrical and Electronic Engineering, Hung Yen University of Technology and Education, Vietnam
autor
- Faculty Electrical and Electronic Engineering, Hung Yen University of Technology and Education, Vietnam
autor
- Faculty Electrical and Electronic Engineering, Hung Yen University of Technology and Education, Vietnam
Bibliografia
- [1] C. M. Lin, D. H. Pham, and T. T. Huynh, "Encryption and Decryption of Audio Signal and Image Secure Communications Using Chaotic System Synchronization Control by TSK Fuzzy Brain Emotional Learning Controllers," IEEE Transactions on Cybernetics, pp. 1-15, 2021.
- [2] C. Lucas, D. Shahmirzadi, and N. Sheikholeslami, "Introducing BELBIC: brain emotional learning based intelligent controller," Intelligent Automation Soft Computing, vol. 10, no. 1, pp. 11-21, 2004.
- [3] H. S. A. Milad and J. J. I. A. Gu, "Expanded neo-fuzzy adaptive decayed brain emotional learning network for online time series predication," vol. 9, pp. 65758-65770, 2021.
- [4] C.-M. Lin, D.-H. Pham, and T.-T. Huynh, "Synchronization of Chaotic System Using a Brain-Imitated Neural Network Controller and Its Applications for Secure Communications," IEEE Access, vol. 9, pp. 75923-75944, 2021.
- [5] T.-T. Huynh, C.-M. Lin, T.-L. Le, V.-P. Vu, and F. Chao, "Self-organizing double function-link fuzzy brain emotional control system design for uncertain nonlinear systems," IEEE Transactions on Systems, Man, Cybernetics: Systems, 2020.
- [6] T.-L. Le, T.-T. Huynh, L.-Y. Lin, C.-M. Lin, and F. Chao, "A K-means Interval Type-2 Fuzzy Neural Network for Medical Diagnosis," International Journal of Fuzzy Systems, vol. 21, no. 7, pp. 2258-2269, 2019.
- [7] A. A. Bakhsh, "High-performance in classification of heart disease using advanced supercomputing technique with cluster-based enhanced deep genetic algorithm," The Journal of Supercomputing, pp. 1-22, 2021.
- [8] V. B. Charles, D. Surendran, SureshKumar, and Control, "Heart disease data based privacy preservation using enhanced ElGamal and ResNet classifier," Biomedical Signal Processing, vol. 71, p. 103185, 2022.
- [9] S. Qiao et al., "RLDS: An explainable residual learning diagnosis system for fetal congenital heart disease," Future Generation Computer Systems, vol. 128, pp. 205-218, 2022/03/01/ 2022.
- [10] A. K. Dwivedi, "Performance evaluation of different machine learning techniques for prediction of heart disease," Neural Computing and Applications, vol. 29, no. 10, pp. 685-693, 2018.
- [11] V. B. Charles, D. Surendran, A. J. B. S. P. SureshKumar, and Control, "Heart disease data based privacy preservation using enhanced ElGamal and ResNet classifier," vol. 71, p. 103185, 2022.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33fc27cf-9ace-4a7d-adcd-29fca3adfa60