PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution and biogeochemical perspectives of nutrients in the Eastern Equatorial Indian Ocean

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The seasonal reversal of ocean circulation associated with seasonal change in the direction of prevailing winds and the occurrence of several anomalous events in the Eastern Equatorial Indian Ocean (EEIO) make this region dynamic and complex in terms of its biogeochemical characteristics. Two multidisciplinary cruises were conducted to measure nutrients and associated physicochemical parameters across the water column (up to 1000 m) of the EEIO during boreal summer and winter monsoons to understand the distribution of nutrients and their spatio-temporal variability from a biogeochemical perspective. The seasonality in the thermohaline structure of the region is indistinct except for surface salinity drop during summer monsoon due to more precipitation on-site and in adjoining areas. Low concentrations of chlorophyll at the surface and in the deep chlorophyll maxima represent the oligotrophic nature of this region. Surface water was found nutrient-depleted (0.03–0.4 µM Nitrate, 0.02–0.13 µM Phosphate). The maxima of vertical profiles of nitrate and phosphate were recorded at a shallower depth (150–200 m) when compared to its maxima in usual oceanic conditions, but a silicate maximum was recorded in deeper water. In the surface and upper mixed layer paucity of nutrients resulted in low N:P and N:Si ratios. Therefore, nitrogen limitation is evident. The overall ratio of N:P yielded a mean value of 15.33 and matched with the representative literature value for the Indian Ocean. The minimum oxygen values (<50 µM) in the deep water (150–200 m) indicated a hypoxic condition. No signature of denitrification and a moderate nitrate deficit were observed in deep waters. The negative values of Nitrate anomaly (N-tracer) at 50–100 m depth were attributed to a Watermass influenced by denitrification. The prevailing oligotrophic condition caused limited synthesis of organic matter and subsequently little decomposition in deep water. The maxima in the apparent oxygen utilization (AOU) profile are confined to 150 to 200 m depth and represent the most active zone for regeneration that is limited to shallow depth. Regenerated nutrients reached maxima at shallower depth and primarily control material cycling in this region. Supply of nitrate to the surface water based on the preformed values of prevailing water mass was primarily by Bay of Bengal water. According to the findings of this study, preformed nitrate concentrations between 100 and 200 metres below the surface were found very low, indicating that Indonesian Through Flow (ITF) has little impact on the distribution of nutrients in this area.
Czasopismo
Rocznik
Strony
381--393
Opis fizyczny
Bibliogr. 57 poz., map., rys., tab., wykr.
Bibliografia
  • 1. Abell, J., Emerson, S., Keil, R.G., 2005. Using preformed nitrate to infer decadal changes in DOM remineralization in the subtropical North Pacific. Global Biogeochem. Cy. 19 (1). https://doi.org/10.1029/2004GB002285
  • 2. Anderson, L.A., Sarmiento, J.L., 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cy. 8 (1), 65-80. https://doi.org/10.1029/93GB03318
  • 3. Benson, B.B., Krause Jr, D., 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere 1. Limnol. Oceanogr. 29 (3), 620-632. https://doi.org/10.4319/lo.1984.29.3.0620
  • 4. Bristow, L.A., Mohr, W., Ahmerkamp, S., Kuypers, M.M., 2017. Nutrients that limit growth in the ocean. Curr. Biol. 27 (11), R474-R478. https://doi.org/10.1016/j.cub.2017.03.030
  • 5. Broecker, W.S., 1974. “NO”, a conservative water-mass tracer. Earth Planet Sci. Lett. 23 (1), 100-107. https://doi.org/10.1016/0012-821X(74)90036-3
  • 6. Broecker, W.S., Takahashi, T., Takahashi, T., 1985. Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity, and initial phosphate concentration. J. Geophys. Res. 90 (C4), 6925-6939. https://doi.org/10.1029/JC090iC04p06925
  • 7. Broecker, W., Matsumoto, K., Clark, E., Hajdas, I., Bonani, G., 1999. Radiocarbon age differences between coexisting foraminiferal species. Paleoceanography 14 (4), 431-436. https://doi.org/10.1029/1999PA900019
  • 8. Codispoti, L.A., Brandes, J.A., Christensen, J.P., Devol, A.H., Naqvi, S.W.A., Paerl, H.W., Yoshinari, T., 2001. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene. Sci. Mar. 65, 85-105. https://doi.org/10.17615/ksfx-e447
  • 9. Deutsch, C., Gruber, N., Key, R.M., Sarmiento, J.L., Ganachaud, A., 2001. Denitrification and N2 fixation in the Pacific Ocean. Global Biogeochem. Cy. 15 (2), 483-506. https://doi.org/10.1029/2000GB001291
  • 10. Deutsch, C., Sarmiento, J.L., Sigman, D.M., Gruber, N., Dunne, J.P., 2007. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445, 164-167. https://doi.org/10.1038/nature05392
  • 11. Deutsch, C., Weber, T., 2012. Nutrient ratios as a tracer and driver of ocean biogeochemistry. Ann. Rev. Mar. Sci. 4, 13-141. https://doi.org/10.1146/annurev-marine-120709-142821
  • 12. Emery, W.J., Meincke, J., 1986. Global water masses-summary and review. Oceanol. Acta 9 (4), 383-391.
  • 13. Evans, W., Strutton, P.G., Chavez, F.P., 2009. Impact of tropical instability waves on nutrient and chlorophyll distributions in the equatorial Pacific. Deep Sea Res. Pt. I 56 (2), 178-188. https://doi.org/10.1016/j.dsr.2008.08.008
  • 14. Falkowski, P.G., 1994. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth. Res. 39 (3), 235-258. https://doi.org/10.1007/BF00014586
  • 15. Garcia, H.E., Gordon, L.I., 1992. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr. 37 (6), 1307-1312. https://doi.org/10.4319/lo.1992.37.6.1307
  • 16. Gordon, A.L., Ma, S., Olson, D.B., Hacker, P., Ffield, A., Talley, L.D., Wilson, D., Baringer, M., 1997. Advection and diffusion of Indonesian throughflow water within the Indian Ocean South Equatorial Current. Geophys. Res. Lett. 24 (21), 2573-2576. https://doi.org/10.1029/97GL01061
  • 17. Grasshoff, K., Kremling, K., Ehrhardt, M. (Eds.), 2009. Methods of seawater analysis. John Wiley & Sons.
  • 18. Gruber, N., Sarmiento, J.L., 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cy. 11 (2), 235-266. https://doi.org/10.1029/97GB00077
  • 19. Harms, N.C., Lahajnar, N., Gaye, B., Rixen, T., Dähnke, K., Ankele, M., Schwarz-Schampera, U., Emeis, K.C., 2019. Nutrient distribution and nitrogen and oxygen isotopic composition of nitrate in water masses of the subtropical southern Indian Ocean. Biogeosciences 16 (13), 2715-2732. https://doi.org/10.5194/bg- 16- 2715- 2019
  • 20. Horii, T., Ueki, I., Ando, K., Hasegawa, T., Mizuno, K.,Seiki, A., 2016. Impact of intraseasonal salinity variations on sea surface temperature in the eastern equatorial Indian Ocean. J. Oceanogr. 72 (2), 313-326. https://doi.org/10.1007/s10872-015-0337-x
  • 21. Karl, D.M., Letelier, R., Hebel, D.V., Bird, D.F., Winn, C.D., 1992. Trichodesmium blooms and new nitrogen in the North Pacific gyre. In: Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs. Springer, Dordrecht, 219-237. https://doi.org/10.1007/978-94-015-7977-3_14
  • 22. Kehinde, O., Bourassa, M., Kranz, S., Landry, M.R., Kelly, T., Stukel, M.R., 2023. Lateral advection of particulate organic matter in the eastern Indian Ocean. J. Geophys. Res. 128 (5), e2023JC019723. https://doi.org/10.1029/2023JC019723
  • 23. Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., Gerkema, T., Bessières, L., Molcard, R., 2007. On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophys. Res. Lett. 34 (4). https://doi.org/10.1029/2006GL028405
  • 24. Laufkötter, C., John, J.G., Stock, C.A., Dunne, J.P., 2017. Temperature and oxygen dependence of the remineralization of organic matter. Global Biogeochem. Cy. 31 (7), 1038-1050. https://doi.org/10.1002/2017GB005643
  • 25. Lomas, M.W., Lipschultz, F., 2006. Forming the primary nitrite maximum: nitrifiers or phytoplankton? Limnol. Oceanogr. 51 (5), 2453-2467. https://doi.org/10.4319/lo.2006.51.5.2453
  • 26. Makarim, S., Sprintall, J., Liu, Z., Yu, W., Santoso, A., Yan, X.H., Susanto, R.D., 2019. Previously unidentified Indonesian Through-flow pathways and freshening in the Indian Ocean during recent decades. Sci. Rep. 9 (1), 1-13. https://doi.org/10.1038/s41598-019-43841-z
  • 27. Mamayev, O.I., 1975. Temperature — Salinity Analysis of World Ocean Waters. In: Elsevier Oceanography Series, 11. Elsevier Publ., Amsterdam, 374 pp.
  • 28. Millero, F.J., 2013. Descriptive oceanography. In: Chemical Oceanography. CRC Press, 21-74. https://doi.org/10.1201/b14753-7
  • 29. Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd, P.W., Galbraith, E.D., Geider, R.J., Guieu, C., Jaccard, S.L., Jickells, T.D., La Roche, J., Lenton, T.M., Mahowald, N.M., Marañón, E., Marinov, I., J Moore, K., Nakatsuka, T., Oschlies, A., Saito, M.A., Thingstad, T.F., Tsuda, A., Ulloa, O., 2013. Processes and patterns of oceanic nutrient limitation. Nature Geosci 6 (9), 701-710. https://doi.org/10.1038/ngeo1765
  • 30. Ono, T., Midorikawa, T., Watanabe, Y., Tadokoro, K., Saino, T., 2001. Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 to 1998. Geophysi. Res. Lett. 28 (17), 3285-3288. https://doi.org/10.1029/2001gl012948
  • 31. Painter, S.C., Hartman, S.E., Kivimäe, C., Salt, L.A., Clargo, N.M., Daniels, C.J., Bozec, Y., Daniels, L., Allen, S., Hemsley, V.S., Moschonas, G., Davidson, K., 2017. The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export. Prog. Oceanogr. 159, 154-177. https://doi.org/10.1016/j.pocean.2017.10.001
  • 32. Park, K., 1967. Nutrient regeneration and preformed nutrients off Oregon. Limnol. Oceanogr. 12 (2), 353-357. https://doi.org/10.4319/lo.1967.12.2.0353
  • 33. Perigaud, C., McCreary Jr, J.P., Zhang, K.Q., 2003. Impact of inter-annual rainfall anomalies on Indian Ocean salinity and tempera-ture variability. J. Geophys. Res. 108 (C10). https://doi.org/10.1029/2002JC001699
  • 34. Rao, C.K., Naqvi, S.W.A., Kumar, M.D., Varaprasad, S.J.D., Jayakumar, D.A., George, M.D., Singbal, S.Y.S., 1994. Hydrochemistry of the Bay of Bengal: possible reasons for a different water-column cycling of carbon and nitrogen from the Arabian Sea. Mar.Chem 47 (3—4), 279-290. https://doi.org/10.1016/0304-4203(94)90026-4
  • 35. Ray, R.D., Susanto, R.D., 2016. Tidal mixing signatures in the Indonesian seas from high-resolution sea surface temperaturę data. Geophys. Res. Lett. 43 (15), 8115-8123. https://doi.org/10.1002/2016GL069485
  • 36. Redfield, A.C., 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. Univ. Press, Liverpool, 76-192. Redfield, A.C., 1958. The biological control of chemical factors in the environment. Am. Sci. 46 (3), 205-221 230A. http://www.jstor.org/stable/27827150
  • 37. Rodier, M., 1997. Physical and nutrient variability in the upper equatorial Pacific associated with westerly wind forcing and wave activity in October 1994. Deep Sea Res. Pt. II 44 (9—10), 1783-1800. https://doi.org/10.1016/S0967-0645(97)00023-4
  • 38. Sardessai, S., Shetye, S., Maya, M.V., Mangala, K.R., Kumar, S.P., 2010. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean. Mar. Environ. Res. 70 (3—4), 272—282. https://doi.org/10.1016/j.marenvres.2010.05.009
  • 39. Sarma, V.V.S.S., Rao, G.D., Viswanadham, R., Sherin, C.K., Salisbury, J., Omand, M.M., Mahadevan, A., Murty, V.S.N., Shroyer, E.L., Baumgartner, M., Stafford, K.M., 2016. Effects of freshwater stratification on nutrients, dissolved oxygen, and phytoplankton in the Bay of Bengal. Oceanography 29 (2), 222-231. https://www.jstor.org/stable/24862685
  • 40. Sarmiento, J.L., Gruber, N., 2006. Ocean Biogeochemical Dynamics. Princeton Univ. Press, Princeton, NJ, 503 pp.
  • 41. Schlitzer, R., Mieruch-Schnülle, S., 2019. Bringing the Ocean Data View Software to the Web. In: EGU General Assembly Conference Abstracts, 6596.
  • 42. Schot, F., Xie, S.P., McCrery, J., 2009. Indian Ocean circulation and climate variability. Rev. Geophys. 47 (1). https://doi.org/10.1029/2007RG000245
  • 43. Schott, F.A., McCreary Jr, J.P., 2001. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51 (1), 1-123. https://doi.org/10.1016/S0079-6611(01)00083-0
  • 44. Sen Gupta, R., Sankaranarayanan, V.N., De Sousa, S.N., Fondekar, S.P., 1976. Chemical oceanography of the Arabian Sea: Part III —Studies on nutrient fraction and stoichiometric relationships in the northern and the eastern basins.
  • 45. Sengupta, D., Bharath Raj, G.N., Shenoi, S.S.C., 2006. Surface freshwater from Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean. Geophys. Res. Lett. (22) 33. https://doi.org/10.1029/2006GL027573
  • 46. Sengupta, S., Parekh, A., Chakraborty, S., Ravi Kumar, K., Bose, T., 2013. Vertical variation of oxygen isotope in Bay of Bengal and its relationships with water masses. J. Geophys. Res. 118 (12), 6411-6424. https://doi.org/10.1002/2013JC008973
  • 47. Shetye, S.R., Shenoi, S.S.C., Gouveia, A.D., Michael, G.S., Sundar, D., Nampoothiri, G., 1991. Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon. Cont. Shelf Res. 11, 1397-1408. https://doi.org/10.1016/0278-4343(91)90042-5
  • 48. Shetye, S.R., Gouveia, A.D., Shenoi, S.S.C., Sundar, D., Michael, G.S., Nampoothiri, G., 1993. The western boundary current of the seasonal subtropical gyre in the Bay of Bengal. J. Geophys. Res. 98 (C1), 945-954. https://doi.org/10.1029/92JC02070
  • 49. Sigman, D.M., Boyle, E.A., 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407 (6806), 859-869. https://doi.org/10.1038/35038000
  • 50. Singh, A., Baer, S.E., Riebesell, U., Martiny, A.C., Lomas, M.W., 2015. C:N:P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean. Biogeosciences 12 (21), 6389-6403. https://doi.org/10.5194/bg-12-6389-2015
  • 51. Sverdrup, H.U., Johnson, M.W., Fleming, R.H., 1942. The Oceans: Their Physics, Chemistry, and General Biology. Prentice-Hall, New York, 1087 pp.
  • 52. Sprintall, J., Gordon, A.L., Koch-Larrouy, A., Lee, T., Potemra, J.T., Pujiana, K., Wijffels, S.E., 2014. The Indonesian seas and their role in the coupled ocean—climate system. Nature Geosci. 7 (7), 487-492. https://doi.org/10.1038/ngeo2188
  • 53. Taufiqurrahman, E., Wahyudi, A.J., Masumoto, Y., 2020. The Indonesian Throughflow and its Impact on Biogeochemistry in the Indonesian Seas. ASEAN J. Sci. Tech. Dev. 37 (1), 29-35. https://doi.org/10.29037/ajstd.596
  • 54. Tomczak, M., Godfrey, J.S., 2003. Regional oceanography: an introduction. Daya Books. Unger, D., Ittekkot, V., Schäfer, P., Tiemann, J., Reschke, S., 2003. Seasonality and interannual variability of particle fluxes to the deep Bay of Bengal: influence of riverine input and oceanographic processes. Deep Sea Res. Pt. II 50 (5), 897-923. https://doi.org/10.1016/S0967-0645(02)00612-4
  • 55. Vinayachandran, P.N., Nanjundiah, R.S., 2009. Indian Ocean Sea surface salinity variations in a coupled model. Climate Dynam. 33 (2), 245-263. https://doi.org/10.1007/s00382-008-0511-6
  • 56. Weiss, R.F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res. Oceanogr. Abs. 17 (4), 721-735. https://doi.org/10.1016/0011-7471(70)90037-9
  • 57. You, Y., Tomczak, M., 1993. Thermocline circulation and ventilation in the Indian Ocean derived from water mass analysis. Deep Sea Res. Pt. I. Oceanogr. Res. Papers 40 (1), 13-56. https://doi.org/10.1016/0967-0637(93)90052-5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33f58cd8-b8f0-44cf-8c84-e6f13dcd9d10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.