PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Usage of Self-Regulating Steam Traps for Optimal Condensate Removal in Steam Pipelines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In energy-intensive systems, in which energy need to be transported through compact pipelines, steam is very often used as an energy carrier. The latent heat of steam condensation, surpassing its sensible heat, presents a distinctive advantage, resulting in steam pipelines requiring diameters significantly smaller compared to those needed for equivalent thermal power transmission. Nonetheless, the insulation of steam pipelines remains imperfect, resulting in inevitable heat dissipation. Consequently, this thermal loss leads to the condensation of water within the pipelines, necessitating the implementation of steam traps. The precise selection and implementation of suitable steam traps are essential for sustaining optimal pipeline functionality while minimizing energy losses. This research endeavors to comprehensively assess the criteria governing steam trap selection, focusing on their pivotal role in facilitating efficient pipeline operation. To achieve this objective, a mathematical analysis was conducted to quantify the volume of liquid generated within the pipeline due to condensation. Subsequently, an innovative self-regulating steam trap was introduced and evaluated to elucidate its efficiency in evacuating the accumulated liquid. Remarkably, the utilization of these advanced self-regulating steam traps yielded remarkably positive outcomes, profoundly enhancing pipeline performance and obviating steam losses. Through meticulous analysis of the mathematical model and empirical validation of the novel steam trap's functionality, this study not only contributes to enhancing the theoretical understanding of steam pipeline dynamics but also offers practical insights into optimizing their operational efficiency. This research showcases the potential of self-regulating steam traps to revolutionize steam pipeline dewatering practices, ensuring sustained energy transmission with minimal wastage and reaffirming their pivotal role in modern energy systems.
Czasopismo
Rocznik
Tom
1
Strony
24--32
Opis fizyczny
Bibliogr. 14 poz., rys., tab., fot.
Twórcy
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Warsaw, Poland
  • Eneon sp. z o. o., Warsaw, Poland
  • Eneon sp. z o. o., Warsaw, Poland
Bibliografia
  • 1. ARI-Armaturen Albert Richter GmbH & Co. KG D-33756 SH-S. CONA S - Odwadniacz pływakowy 2007.
  • 2. Einstein, D., Worrell, E., Khrushch, M.: Steam systems in industry: Energy use and energy efficiency improvement potentials. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2001
  • 3. Grzebielec A., Rusowicz A.: Thermal Resistance of Steam Condensation in Horizontal Tube Bundles. Journal of Power Technologies 91 1 (2011).
  • 4. Lienhard J., Lienhard J: A Heat Transfer Textbook: Fifth Edition, 2020, Phlogiston Press, Cambridge, MA
  • 5. Łapka P., Seredyński M., Grzebielec A., Szelągowski A., Śmiechowicz M., Gromadzki E.: Numerical investigation of the effect of the shape of the nozzle on the flash boiling phenomenon. E3S Web of Conferences 128 (2019), DOI:10.1051/e3sconf/201912807005
  • 6. Mizielińska, K., Olszak, J.: Parowe źródła ciepła, Wydawnictwa Naukowo-Techniczne, 2012
  • 7. Merritt, C.: Process steam systems: a practical guide for operators, maintainers, and designers, John Wiley Sons, 2015
  • 8. PN-EN 26554 - Odwadniacze samoczynne kołnierzowe -- Długości zabudowy odwadniaczy prostych
  • 9. Risko, J.R.: Understanding Steam Traps, Chemical Engineering Progress, vol. 107, no. 2, pp. 21-26, 2011STERIFLOW. Mark 93 Series - Sanitary Steam Traps 2019.
  • 10. Sher, E., Bar-Kohany, T., Rashkovan, A.: Flash-boiling atomization. Progress in energyand combustion science, 34(4), 417-439, 2008
  • 11. Szałucki K.: Odwadniacz w systemie parowym, Systemy Pary i Kondensatu, 2014
  • 12. Taplin H.: Steam Traps. In Boiler Plant and Distribution System Optimization Manual, (3rd ed., pp. 1-5). Fairmont Press, 2014
  • 13. TLV CO LTD. Balanced pressure thermostatic steam trap - model LV6 Clean Steam Trap 2019.
  • 14. Ziemiański P., Grzebielec A., Szelągowski A, Śmiechowicz M.: Approximation of flow characteristics of steam traps based on experimental research. Modern Engineering 1 (2022) 20-35
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33f53b0e-26ef-490c-8b3a-a3759d9fc5bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.