Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mangrove ecosystem significantly contributes to nutrient and carbon exchange. It is primarily stored in the soil as organic matter, significantly benefiting the surrounding organisms. However, it could be changed depending on its surrounding conditions. This research aimed to determine the percentage of soil carbon-nitrogen and its ratio in two mangrove ecosystems, one with high anthropogenic impact (Tahura Ngurah Rai) and the other on a small island (Lembongan Island). We collect soil samples on 14 plots at each station at 0–30 cm depth and use carbon titration and TN-Kjeldahl methods for soil carbon-nitrogen measurement. The result shows substantial disparities in soil carbon levels between these ecosystems, but the soil nitrogen content was comparable. Two specific plots at Tahura Ngurah Rai (T8 and T11) were found at low soil carbon levels due to the damage to the mangrove forest. The C/N values vary between stations, primarily because of their different sources (Tahura Ngurah Rai: human activities, Lembongan: marine organisms). The C/N value at Tahura Ngurah Rai is higher than the Redfield ratios, while Lembongan Island is on the contrary. However, its levels at both stations are still categorized as common conditions for mangrove ecosystems compared to various sites in Indonesia. Future research will involve measuring radioisotope characteristics to verify the origin of nutrients in these ecosystems. Obtaining measurements of environmental parameters is also necessary to provide a more comprehensive explanation of the results.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
343--354
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, Universitas Udayana, Badung 80361, Indonesia
- Doctoral Program in Environmental Science, Universitas Udayana, Denpasar 80232, Indonesia
autor
- Doctoral Program in Environmental Science, Universitas Udayana, Denpasar 80232, Indonesia
- Biology Study Program, Faculty of Mathematics and Natural Sciences, Universitas Udayana, Badung 80361, Indonesia
autor
- Doctoral Program in Environmental Science, Universitas Udayana, Denpasar 80232, Indonesia
- Faculty of Animal Husbandry, Universitas Udayana, Denpasar 80232, Indonesia
autor
- Doctoral Program in Environmental Science, Universitas Udayana, Denpasar 80232, Indonesia
- Department of Marine Science, Faculty of Marine Science and Fisheries, Universitas Udayana, Badung 80361, Indonesia
autor
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, Universitas Udayana, Badung 80361, Indonesia
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, Universitas Udayana, Badung 80361, Indonesia
- ayuputu@unud.ac.id
autor
- Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Bogor 16680, Indonesia
Bibliografia
- 1. Alongi, D.M. 2020. Nitrogen cycling and mass balance in the world’s mangrove forests. Nitrogen, 1(2), 167–189. https://doi.org/10.3390/nitrogen1020014
- 2. Ardhani, T.S.P., Murdiyarso, D., Kusmana, C. 2020. Effects of permeable barriers on total ecosystem carbon stocks of mangrove forests and abandoned ponds in Demak District, Central Java, Indonesia. Biodiversitas Journal of Biological Diversity, 21(11), 5298–5307. https://doi.org/10.13057/biodiv/d211134
- 3. Azwa, J.N.M., Hanafi, M.M., Hakim, M.A., Idris, A.S., Sahebi, M., Rafii, M.Y. 2022. The relationship between soil characteristics and the nutrient status in roots of mangrove (Rhizophora apiculata) trees. Arabian Journal of Geosciences, 15, 1145. https://doi.org/10.1007/s12517-022-10416-8
- 4. BPS Kota Denpasar. 2022. Kota Denpasar Dalam Angka 2022. Badan Pusat Statistik Kota Denpasar.
- 5. BPS Nusa Penida. 2021. Kecamatan Nusa Penida Dalam Angka 2021. Badan Pusat Statistik Kota Denpasar.
- 6. Chen, D., Ke, Z., Tan, Y. 2021. Distribution of C/N/P stoichiometry in suspended particulate matter and surface sediment in a bay under serious anthropogenic influence: Daya Bay, China. Environmental Science and Pollution Research, 28, 29177–29187. https://doi.org/10.1007/s11356-021-12812-1
- 7. Chen, G., Chen, B., Yu, D., Tam, N.F., Ye, Y., Chen, S. 2016. Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environmental Research Letters, 11(12), 124019. https://doi:10.1088/1748-9326/11/12/124019
- 8. Chen, L., Lin, Q., Krauss, K.W., Zhang, Y., Cormier, N., Yang, Q. 2021. Forest thinning in the seaward fringe speeds up surface elevation increment and carbon accumulation in managed mangrove forests. Journal of Applied Ecology, 58(9), 1899–1909. https://doi.org/10.1111/1365-2664.13939
- 9. Das, N., Mondal, A., Mandal, S. 2022. Polluted waters of the reclaimed islands of Indian Sundarban promote more greenhouse gas emissions from mangrove ecosystem. Stochastic Environmental Research and Risk Assessment, 36, 1277–1288. https://doi.org/10.1007/s00477-021-02135-5
- 10. Feng, J., Cui, X., Zhou, J., Wang, L., Zhu, X., Lin, G. 2019. Effects of exotic and native mangrove forests plantation on soil organic carbon, nitrogen, and phosphorus contents and pools in Leizhou, China. Catena, 180, 1–7. https://doi.org/10.1016/j.catena.2019.04.018
- 11. Hakim, M.A., Martuti, N.K.T., Irsadi, A. 2016. Estimasi Stok Karbon Mangrove di Dukuh Tapak Kelurahan Tugurejo Kota Semarang. Life Science, 5(2), 87–94.
- 12. Hapsari, F.N., Maslukah, L., Dharmawan, I.W.E., Wulandari, S.Y. 2022. Carbon Stock in Mangrove Sediments and Its Relationship to Tides on Bintan Island. Buletin Oseanografi Marina, 11(1), 86–98. https://doi.org/10.14710/buloma.v11i1.39107
- 13. Hossain, G.M., and Bhuiyan, M.A.H. 2016. Spatial and temporal variations of organic matter contents and potential sediment nutrient index in the Sundarbans mangrove forest, Bangladesh. KSCE Journal of Civil Engineering, 20, 163–174. https://doi.org/10.1007/s12205-015-0333-0
- 14. Hu, C., Hu, G., Xu, C.H., LI, F., Zhang, Z.H. 2022. Soil physical and chemical properties effect the soil microbial carbon, nitrogen, and phosphorus stoichiometry In A Mangrove Forest, South China. Applied Ecology and Environmental Research, 20(5), 4377–4389. http://dx.doi.org/10.15666/aeer/2005_43774389
- 15. Inoue, T. 2019. Carbon Sequestration in Mangroves. In: Kuwae, T., Hori, M. (eds) Blue Carbon in shallow coastal ecosystems. Springer, Singapore, 73– 99. https://doi.org/10.1007/978-981-13-1295-33
- 16. Jiang S., Jin L., Jin J., Iba´ nhez J.S.P., Wu, Y., Zhang, J. 2022. Exploring feedback mechanisms for nitrogen and organic carbon cycling in tropical coastal zones. Frontiers in Marine Science, 9, 996655. https://doi.org/10.3389/fmars.2022.996655
- 17. JICA. 1999. The Final Report of Project Administration: The Development of Sustainable Mangrove Management Project Bali and Lombok, Republic of Indonesia. Ministry of Forestry and Estate Crops in Indonesia - Japan International Cooperation Agency, Jakarta. [Indonesian]
- 18. Kanti, H.M., Supriharyono, S., Rahman, A. 2019. The content of N and P results of decomposition of litter of mangrove leaves in sediments at Maron Mangrove Edu Park, Semarang. Management of Aquatic Resources Journal (MAQUARES), 8(3), 226–233. https://doi.org/10.14710/marj.v8i3.24260
- 19. Kepel, T.L., Ati, R.N.A., Rahayu, Y.P., Adi, N.S. 2018. the impact of mangroves conversion on sediment properties and capacity to store carbon. Jurnal Kelautan Nasional, 13(3), 145–153. http://dx.doi.org/10.15578/jkn.v13i3.6620
- 20. Li, Y., Zhang, H., Tu, C., Fu, C., Xue, Y., Luo, Y. 2016. Sources and fate of organic carbon and nitrogen from land to ocean: Identified by coupling stable isotopes with C/N ratio. Estuarine, Coastal and Shelf Science, 181, 114–122. https://doi.org/10.1016/j.ecss.2016.08.024
- 21. Liu, J., Zhou, Y., Valach, A., Shortt, R., Kasak, K., Rey‐Sanchez, C., Hemes, K.S., Baldocchi, D., Lai, D.Y. 2020. Methane emissions reduce the radiative cooling effect of a subtropical estuarine mangrove wetland by half. Global Change Biology, 26(9), 4998–5016. https://doi.org/10.1111/gcb.15247
- 22. Liu, Q., Liang, Y., Cai, W.J., Wang, K., Wang, J., Yin, K. 2020. Changing riverine organic C: N ratios along the Pearl River: Implications for estuarine and coastal carbon cycles. Science of the Total Environment, 709, 136052. https://doi.org/10.1016/j.scitotenv.2019.136052
- 23. Lubis, Z. 2021. Statistika Terapan untuk Ilmu-Ilmu Sosial dan Ekonomi. ANDI, Yogyakarta.
- 24. MacKenzie, R., Sharma, S., Rovai, A.R. 2021. Environmental drivers of blue carbon burial and soil carbon stocks in mangrove forests. In Dynamic sedimentary environments of mangrove coasts, 275–294. Elsevier. https://doi.org/10.1016/B978-0-12-816437-2.00006-9
- 25. Mahasani, I.G.A.I., Karang, I.W.G.A., Hendrawan, I.G. 2016. Karbon organik di bawah permukaan tanah pada kawasan rehabilitasi hutan mangrove, Taman Hutan Raya Ngurah Rai, Bali. In Prosiding Seminar Nasional Kelautan, 33–42.
- 26. Mamidala, H.P., Ganguly, D., Ramachandran, P., Reddy, Y., Selvam, A.P., Singh, G., Banerjee, K., Robin, R.S., Ramachandran, R. 2022. Distribution and dynamics of particulate organic matter in Indian mangroves during dry period. Environmental Science and Pollution Research, 29, 64150–64161. https://doi.org/10.1007/s11356-022-20322-x
- 27. Marbun, A., Rumengan, A.P., Schaduw, J.N., Paruntu, C.P., Angmalisang, P.A., Manopo, V.E. 2020. Carbon stock analysis of mangrove sediment in Baturapa Village, Lolak District, Bolaang Mongondow Regency. Jurnal Pesisir dan Laut Tropis, 8(1), 20–30. https://doi.org/10.35800/jplt.8.1.2020.27395
- 28. Matsui, N., Meepol, W., Chukwamdee, J. 2015. Soil organic carbon in mangrove ecosystems with different vegetation and sedimentological conditions. Journal of Marine Science and Engineering, 3(4), 1404–1424. https://doi.org/10.3390/jmse3041404
- 29. McGroddy, M.E., Daufresne, T., Hedin, L.O. 2004. Scaling of C: N: P stoichiometry in forests worldwide: Implications of terrestrial redfield‐type ratios. Ecology, 85(9), 2390–2401. https://doi.org/10.1890/03-0351
- 30. Nguyen, T.M.H., Le, T.P.Q., Hoang, V.V., Vu, C.T. 2022. Biodegradable and seasonal variation of organic carbon affected by anthropogenic activity: a case in Xuan Thuy Mangrove Forest, North Vietnam. Water, 14(5), 773. https://doi.org/10.3390/w14050773
- 31. Palguna, I.B.A., Ardhana, I.P.G., Arthana, I.W. 2017. Mangrove forest structure and diversity in Nusa Lembongan, Nusa Penida Sub District, Klungkung District. Ecotrophic, 11(2), 108–115. https://doi.org/10.24843/EJES.2017.v11.i02.p07
- 32. Palufi, G.E., Hamdani, H., Pratama, R.I., Sahidin, A. 2019. Success rate of mangrove planting based on mangrove morphology at Pramuka Island, Kepulauan Seribu National Park, Indonesia. World News of Natural Sciences, (27), 73–84.
- 33. Pradisty, N.A., Amir, A.A., Zimmer, M. 2021. Plant species-and stage-specific differences in microbial decay of mangrove leaf litter: the older the better?. Oecologia, 195(4), 843–858. https://doi.org/10.1007/s00442-021-04865-3
- 34. Pricillia, C.C., Herdiansyah, H. and Patria, M.P. 2021. Environmental conditions to support blue carbon storage in mangrove forest: A case study in the mangrove forest, Nusa Lembongan, Bali, Indonesia. Biodiversitas Journal of Biological Diversity, 22(6), 3304–3314. https://doi.org/10.13057/biodiv/d220636
- 35. Purahong, W., Sadubsarn, D., Tanunchai, B., Wahdan, S.F.M., Sansupa, C., Noll, M., Wu, Y-T., Buscot, F. 2019. First insights into the microbiome of a mangrove tree reveal significant differences in taxonomic and functional composition among plant and soil compartments. Microorganisms, 7(12), 585. https://doi.org/10.3390/microorganisms7120585
- 36. Queiroz, H.M., Artur, A.G., Taniguchi, C.A.K., da Silveira, M.R.S., do Nascimento, J.C., Nóbrega, G.N., Otero, X.L., Ferreira, T.O. 2019. Hidden contribution of shrimp farming effluents to greenhouse gas emissions from mangrove soils. Estuarine, Coastal and Shelf Science, 221, 8–14. https://doi.org/10.1016/j.ecss.2019.03.011
- 37. Queiroz, H.M., Ferreira, T.O., Taniguchi, C.A.K., Barcellos, D., do Nascimento, J.C., Nóbrega, G.N., Otero, X.L., Artur, A.G. 2020. Nitrogen mineralization and eutrophication risks in mangroves receiving shrimp farming effluents. Environmental Science and Pollution Research, 27, 34941–34950. https://doi.org/10.1007/s11356-020-09720-1
- 38. Romero-Mujalli, G., and Melendez, W. 2023. Nutrients and trace elements of semi-arid dwarf and fully developed mangrove soils, northwestern Venezuela. Environmental Earth Sciences, 82(1), 51. https://doi.org/10.1007/s12665-022-10701-5
- 39. Romero-Uribe, H.M., López-Portillo, J., Reverchon, F., Hernández, M.E. 2022. Effect of degradation of a black mangrove forest on seasonal greenhouse gas emissions. Environmental Science and Pollution Research, 1–15. https://doi.org/10.1007/s11356-021-16597-1
- 40. Saavedra-Hortua, D.A., Friess, D.A., Zimmer, M., Gillis, L.G. 2020. Sources of particulate organic matter across mangrove forests and adjacent ecosystems in different geomorphic settings. Wetlands, 40(5), 1047–1059. https://doi.org/10.1007/s13157-019-01261-9
- 41. Sadewi, L.S., Nugraha, M.A., Akhrianti, I. 2022. Konsentrasi dan distribusi karbon organik total (TOC), total nitrogen (TN) dan rasio C/N pada sedimen di perairan kawasan pelabuhan pangkal balam, Bangka. Journal of Tropical Marine Science, 5(2), 121–130. https://doi.org/10.33019/jour.trop.mar.sci.v5i2.2552
- 42. Sarker, S., Masud‐Ul‐Alam, M., Hossain, M.S., Rahman Chowdhury, S., Sharifuzzaman, S.M. 2021. A review of bioturbation and sediment organic geochemistry in mangroves. Geological Journal, 56(5), 2439–2450. https://doi.org/10.1002/gj.3808
- 43. Servais, S., Kominoski, J.S., Davis, S.E., Gaiser, E.E., Pachόn, J., Troxler, T.G. 2019. Effects of nutrient-limitation on disturbance recovery in experimental mangrove wetlands. Wetlands, 39, 337–347. https://doi.org/10.1007/s13157-018-1100-z
- 44. Shiau, Y.J., and Chiu, C.Y. 2020. Biogeochemical processes of C and N in the soil of mangrove forest ecosystems. Forests, 11(5), 492. https://doi.org/10.3390/f11050492
- 45. Sugiana, I.P., Andiani, A.A.E., Dewi, I.G.A.I.P., Karang, I.W.G.A., As-Syakur, A.R., Dharmawan, I.W.E. 2022. Spatial distribution of mangrove health index on three genera dominated zones in Benoa Bay, Bali, Indonesia. Biodiversitas Journal of Biological Diversity, 23(7), 3407–3418. https://doi.org/10.13057/biodiv/d230713
- 46. Tan, L., Ge, Z., Ji, Y., Lai, D.Y., Temmerman, S., Li, S., Li, X., Tang, J. 2022. Land use and land cover changes in coastal and inland wetlands cause soil carbon and nitrogen loss. Global Ecology and Biogeography, 31(12), 2541–2563. https://doi.org/10.1111/geb.13597
- 47. Vincent, S.G.T., Jennerjahn, T.C., Ramasamy, K. 2021. Microbial Communities in Coastal Sediments: Structure and Functions. Elsevier.
- 48. Xia, S., Song, Z., Li, Q., Guo, L., Yu, C., Singh, B.P., Fu, X., Chen, C., Wang, Y., Wang, H. 2021. Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ13C‐δ15N, and lignin biomarker. Global Change Biology, 27(2), 417–434. https://doi.org/10.1111/gcb.15403
- 49. Yin, S., Wang, J., Yu, T., Wang, M., Wu, Y., Zeng, H. 2023. Constraints on the spatial variations of soil carbon fractions in a mangrove forest in Southeast China. CATENA, 222, 106889. https://doi.org/10.1016/j.catena.2022.106889
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33f353b8-e3d5-4bdc-a6c7-9a96f5a97bc9