PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Organic vs. standard photodetectors : Mini Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Organic semiconductors (OSCs) have been found to be a prominent group of optoelectronic materials extensively researched for more than 40 years due to their ability to tune capabilities by modifying chemical structure and simple processing. Their performance has been significantly improved, advancing from the fast development in the design and synthesis of new OSC materials. This paper attempts to essentially confront the performance of organic photodetectors with standard detectors dominating the global commercial market. Special attention was paid to the organic field-effect transistor (FET) phototransistors detectivity overestimates.
Rocznik
Strony
art. no. e153812
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
autor
  • State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Peumans, P., Yakimov, A. & Forrest, S. R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693-3723 (2003). https://doi.org/10.1063/1.1534621.
  • [2] Forrest, S. F. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911-918 (2004). https://doi.org/10.1038/nature02498.
  • [3] Shaheen, S. E., Ginley, D. S. & Jabbour, G. E. Organic based photovoltaics: Toward low-cost power generation. MRS Bull. 30, 10-19 (2005). https://doi.org/10.1557/mrs2005.2.
  • [4] Scott, J. C. & Bozano, L. D. Nonvolatile memory elements based on organic materials. Adv. Mater. 19, 1452-1463 (2007). https://doi.org:10.1002/adma.200602564.
  • [5] Xue, J. Perspectives on organic photovoltaics. Polym. Rev. 50, 411-419 (2010). https://doi.org/10.1080/15583724.2010.515766.
  • [6] Baeg, K.-J., Binda, M., Natali, D., Caironi, M. & Noh, Y.-Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 25, 4267-4295 (2013). https://doi.org/10.1002/adma.201204979.
  • [7] Manousiadis, P. P., Yoshida, K., Turnbull, G. A. & Samuel, I. D. W. Organic semiconductors for visible light communications. Philos. Trans. R. Soc. A 378, 20190186 (2020). https://doi.org/10.1098/rsta.2019.0186.
  • [8] Simone, G., Dyson, M. J., Meskers, S. C. J., Janssen, R. A. J. & Gelinck, G. H. Organic photodetectors and their applications in large area and flexible image sensors: The role of dark current. Adv. Funct. Mater. 30, 1904205 (2019). https://doi.org/10.1002/adfm.201904205.
  • [9] Forrest, S. R. Organic Electronics: Foundations to Applications. (Oxford University Press, 2020).
  • [10] Ren, H., Chen, J.-D., Li, Y.-Q. & Tang, J.-X. Recent progress in organic photodetectors and their applications. Adv. Sci. 8, 2002418 (2020). https://doi.org/10.1002/advs.202002418.
  • [11] Kruse, P. W. The Photon Detection Process. in Optical and Infrared Detectors (ed. Keyes, R. J.) 5-69 (Springer, Berlin, 1977).
  • [12] Kingston, R. H. Detection of Optical and Infrared Radiation. (Wiley, New York, 1983).
  • [13] Dereniak, E. L. & Boremen, G. D. Infrared Detectors and Systems. (Wiley, New York, 1996).
  • [14] Wang, Y. et al. Narrowband organic photodetectors - towards miniaturized, spectroscopic sensing. Mater. Horiz. 9, 220-251 (2022). https://doi.org/10.1039/D1MH01215K.
  • [15] Li, X. et al. Background limited ultraviolet photodetectors of solarblind ultraviolet detection. Appl. Phys. Lett. 103, 171110 (2013). https://doi.org/10.1063/1.4826458.
  • [16] Tao, J. et al. Organic UV-sensitive phototransistors based on distriphenylamineethynylpyrene derivatives with ultra-high detectivity approaching 1018. Adv. Mater. 32, 1907791 (2020). https://doi.org/10.1002/adma.201907791.
  • [17] Song, I. et al. High-performance visible-blind UV phototransistors based on n-type naphthalene diimide nanomaterials. ACS Appl. Mater. Interfaces 10, 11826-11836 (2018). https://doi.org/10.1021/acsami.8b01500.
  • [18] Qi, Z., Cao, J., Li, H., Ding, L. & Wang, J. High-performance thermally stable organic phototransistors based on PSeTPTI/PC61BM for visible and ultraviolet photodetection. Adv. Funct. Mater. 25, 3138-3146 (2015). https://doi.org/10.1002/adfm.201500525.
  • [19] Han, T. et al. Ultrahigh photosensitive organic phototransistors by photoelectric dual control. J. Mater. Chem. C 7, 4725-4732 (2019). https://doi.org/10.1039/c9tc00324j.
  • [20] Yang, B. et al. High performance ternary organic phototransistors with photoresponse up to 2600 nm at room temperature. Adv. Funct. Mater. 31, 2103787 (2021). https://doi.org/10.1002/adfm.202103787.
  • [21] Bianconi , S., Lauhon , L. J. & Mohseni, H. Exaggerated sensitivity in photodetectors with internal gain. Nat. Photonics 15, 714 (2021). https://doi.org/10.1038/s41566-021-00843-6.
  • [22] Rogalski, A. Detectivities of WS2/HfS2 heterojunctions. Nat. Nanotechnol. 17, 217-219 (2022). https://doi.org/10.1038/s41565-022-01076-6.
  • [23] Rogalski, A. Overestimating the performance of photon ultraviolet detectors. IEEE Electron Device Lett. 44, 805-808 (2023). https://doi.org/10.1109/LED.2023.3262000.
  • [24] Wang, F., Zhang, T., Xie, R., Wang, Z. & Hu, W. How to characterize figures of merit of two-dimensional photodetectors. Nat. Commun. 14, 2224 (2023). https://doi.org/10.1038/s41467-023-37635-1.
  • [25] Shan, T., Hou, X., Yin, X. & Guo, X. Organic photodiodes: device engineering and applications. Front. Optoelectron. 15, 49 (2022). https://doi.org/10.1007/s12200-022-00049-w.
  • [26] Natali, D. & Caironi, M. Organic Photodetectors. in Photodetectors. Materials, Devices and Applications (ed. Nabet, B.) 197-254 (Elsevier, Amsterdam, 2016). https://doi.org/10.1016/B978-1-78242-445-1.00007-5.
  • [27] Sandberg, O. J. et al. Mid-gap trap state-mediated dark current in organic photodiodes. Nat. Photonics 17, 368-374 (2023). https://doi.org/10.1038/s41566-023-01173-5.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This paper was supported by the Polish National Science Centre within Project UMO-2021/41/B/ST7/ 01532.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33eff9b1-46e8-4e04-9817-92b7b1c2829b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.