Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Badania równoległe połączonych przekształtników o topologii podwójnego mostka aktywnego
Języki publikacji
Abstrakty
Isolated dual active bridge (DAB) converters can be connected in parallel to increase power and reliability. However, undesirable phenomena like common mode circulating currents can appear. In the literature, this problem is presented mainly theoretically, based on simulation models in which all parasitic parameters do not occur. The aim of this work is to verify experimentally the common mode current (CMC) in a 25kW input parallel output parallel (IPOP) DAB converter. The results of measurements in converters with and without EMI filters are presented. In addition, the influence of the operating conditions of these systems on the level of CMC currents was checked.
Izolowane przekształtniki o topologii podwójnego mostka aktywnego mogą być łączone równolegle w celu zwiększenia mocy i niezawodności. Niekorzystnym zjawiskiem są krążące prądy zaburzeń wspólnych. W literaturze problem ten jest przedstawiany głównie teoretycznie, w oparciu o modele symulacyjne, w których nie występują wszystkie elementy pasożytnicze. Celem tej pracy jest analiza prądu zaburzeń wspólnych w równolegle połączonych przekształtnikach o mocy znamionowej 25 kW na podstawie wyników eksperymentalnych. Przedstawiono wyniki pomiarów w przekształtnikach z filtrami EMI i bez nich. Ponadto sprawdzono wpływ warunków pracy tych układów na poziom prądu zaburzeń wspólnych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
225--228
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
autor
- Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
autor
- Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
autor
- Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
Bibliografia
- [1] Kheraluwala M. H., Gascoigne R. W., Divan, D. M. and Baumann E. D.: Performance Characterization of a High-Power Dual Active Bridge dc-to-dc Converter, IEEE Trans. Ind. Appl., vol.28, no. 6, pp. 1294–1301, 1992, doi: 10.1109/28.175280
- [2] Dragicevic T., Lu X., Vasquez J. C., and Guerrero J. M.: DC Microgrids - Part I: A Review of Control Strategies and Stabilization Techniques, IEEE Trans. Power Electron., vol. 31, no. 7,pp. 4876–4891, Jul. 2016, doi:10.1109/TPEL.2015.2478859.
- [3] Koszel M., Grzejszczak P., Nowatkiewicz B., Wolski K., Szymczak M., and Czaplicki A. Design of dual active bridge for DC microgrid application, Progress in Applied Electrical Engineering 2022, doi: 10.1109/PAEE56795.2022.9966568.
- [4] Shi J., Zhou L., and He X.: Common-duty-ratio control of inputparallel output-parallel (IPOP) connected DC–DC converter modules with automatic sharing of Currents, IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3277–3291, Jul. 2012. doi:10.1109/tpel.2011.2180541
- [5] Fernandez-Hernandez A., Garcia-Bediaga A., Villar I., and Abad G.: Analysis of interleaved input-parallel output-parallel dual-active-bridge converter for more electric aircraft 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), Oct. 2021. doi:10.1109/vppc53923.2021.9699172
- [6] Kim M., Rosekeit M., Sul S. K., and De Doncker R. W. A. A.: A dual-phase-shift control strategy for dual-active- bridge DC-DC converter in wide voltage range, 8th Int. Conf. Power Electron. - ECCE Asia "Green World with Power Electron. ICPE 2011- ECCE Asia, pp. 364–371, 2011, doi: 10.1109/ICPE.2011.5944548
- [7] Barlik R., Nowak M., and Grzejszczak P.: Power transfer analysis in a single phase dual active bridge, Bull. Polish Acad. Sci. Tech. Sci., vol. 61, no. 4, 2013, doi: 10.2478/bpasts-2013- 0088.
- [8] Krismer F. and Kolar J. W.: Closed form solution for minimum conduction loss modulation of DAB converters, IEEE Trans. Power Electron., vol. 27, no. 1, pp. 174–188, 2012, doi: 10.1109/TPEL.2011.2157976
- [9] Sha D., Guo Z., and Liao X.: Control strategy for input-paralleloutput- parallel connected high-frequency isolated inverter modules, IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2237–2248, 2011, doi: 10.1109/TPEL.2010.2095041
- [10] Liu J., Li C. , Zheng Z., Wang K. and Li Y.: Current Discrepancy Mitigation of Input-Parallel Output-Parallel Dual- Active-Bridge Converters Using Coupled Inductors, IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8182- 8192, Sept. 2021, doi: 10.1109/TIE.2020.3013793
- [11] Liu J., Zheng Z., Li C., Wang K., and Li Y.: Automatic Current Sharing of Input-Parallel Output-Parallel Dual Active Bridge Converters with Coupled Inductors, Proc. Int. Conf. Power Electron. Drive Syst., vol. 2019-July, no. July, 2019, doi:10.1109/PEDS44367.2019.8998766
- [12] Grzejszczak P., Barlik R., Nowak M., and Wolski K.: Bidirectional modular DC/DC converter for direct current microgrids’, Progress in Applied Electrical Engineering, PAEE 2017 doi: 10.1109/PAEE.2017.8008985
- [13] Rolak M., Sobol C., Malinowski M., and Stynski S.: Efficiency Optimization of Two Dual Active Bridge Converters Operating in Parallel, IEEE Trans. Power Electron., vol. 35, no. 6, pp. 6523–6532, Jun. 2020, doi: 10.1109/TPEL.2019.2951833
- [14] Ruszczyk A. , Fonseca T. Q., and Nascimento D.: Time and Frequency Analysis of Circulating Currents on Input-Parallel- Output-Parallel Dual Active Bridge Converter, 2024 IEEE 25th Work. Control Model. Power Electron. COMPEL doi:10.1109/COMPEL57542.2024.10614036.
- [15] Dwiza B. and Kalaiselvi J.: Analytical Approach for Common Mode EMI Noise Analysis in Dual Active Bridge Converter, IECON Proc. (Industrial Electron. Conf., vol. 2020-Octob, pp. 1279–1284, 2020, doi: 10.1109/IECON43393.2020.9254895.
- [16] Serban E., Pondiche C., Wassmuth J., and Ordonez M.: Bidirectional Parallel Low-Voltage Series High-Voltage DABbased Converter Analysis and Design, Conf. Proc. – IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 107–114, 2022, doi: 10.1109/APEC43599.2022.9773669.
- [17] Serban E., Pondiche C., and Ordonez M.: Analysis and Design of Bidirectional Parallel-Series DAB-Based Converter, IEEE Trans. Power Electron., vol. 38, no. 8, pp. 10370–10382, 2023, doi: 10.1109/TPEL.2023.3272336
- [18] Yan Y., Huang Y., Chen R., and Bai H.: Building Common- Mode Analytical Model for Dual Active Bridge Incorporating with Different Modulation Strategies, IEEE Trans. Power Electron., vol. 36, no. 11, pp. 12608–12619, 2021, doi:10.1109/TPEL.2021.3071440.
- [19] Pakjoo M.: Comparison of SPS, DPS and TPS in Dual Active Bridge converter TESI DI LAUREA MAGISTRALE IN ELECTRICAL ENGINEERING INGEGNERIA ELETTERICA, 2023.
- [20] Kumar S., Voruganti S. K., Akin B., and Gohil G.: Common- Mode Current Analysis and Cancellation Technique for Dual Active Bridge Converter Based DC System, IEEE Trans. Ind. Appl., vol. 58, no. 4, pp. 4955–4966, 2022, doi: 10.1109/TIA.2022.3173895
- [21] Dwiza B. and Kalaiselvi J.: Analysis and Mitigation of Circulating Common-Mode Current in Isolated Dual Active Bridge Converter, IECON Proc. (Industrial Electron. Conf., pp. 1–6, 2023, doi: 10.1109/IECON51785.2023.10312310
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33efb65e-d5ff-44ca-9103-3a75a75c3011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.