PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear forced vibration analysis of micro-rotating shaft-disk systems through a formulation based on the nonlocal strain gradient theory

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an upgraded size-dependent formulation for micro-rotating shaft-disks system to study their nonlinear forced vibration behavior. The novel formulation is based on the nonlocal strain gradient theory (NSGT). To achieve this goal, first of all, by incorporating the geometrical nonlinearity within the Rayleigh beam theory, the governing equations of the lateral motion of the system are derived by the Hamilton principle and then converted into a complex form. By defning some dimensionless parameters, the normalized form of the complex governing equation is also extracted. In the next step, the Galerkin method is implemented to establish an infinite set of ordinary differential equations (ODEs). Then, with the help of the method of multiple scales, the nonlinear ODE is solved to attain the vibrational amplitude of the system as well as its forward and backward natural frequencies. Lastly, an all-out parametric study is conducted to appraise the impact of some important factors like the nonlocal theory parameter, the strain gradient length scale parameter, the rotational speed, the amount of mass eccentricity and the internal damping coeffcient on the motion amplitude and natural frequencies. The numerical outcomes illuminate well that depending on the relative value of two non-classical parameters of NSGT, this theory have the potential to reflect the hardening or softening attribute of small-scaled mechanical elements.
Rocznik
Strony
art. no. e85, 2023
Opis fizyczny
Bibliogr. 62 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
  • Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
  • Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Bibliografia
  • 1. Senturia SD. Microsystem design. Springer Science & Business Media; 2007.
  • 2. Lang JH. Multi-wafer rotating MEMS machines. New York: Springer; 2009.
  • 3. Lam DC, Yang F, Chong ACM, Wang J, Tong P. Experiments and theory in strain gradient elasticity. J Mech Phys Solids. 2003;51(8):1477-508.
  • 4. Eringen AC, Edelen D. On nonlocal elasticity. Int J Eng Sci. 1972;10(3):233-48.
  • 5. Toupin R. Elastic materials with couple-stresses. Arch Ration Mech Anal. 1962;11(1):385-414.
  • 6. Yang FACM, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39(10):2731-43.
  • 7. Mindlin RD, Eshel N. On first strain-gradient theories in linear elasticity. Int J Solids Struct. 1968;4(1):109-24.
  • 8. Lim CW, Zhang G, Reddy J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298-313.
  • 9. Liu D, Geng T, Wang H, Esmaeili S. Analytical solution for thermoelastic oscillations of nonlocal strain gradient nanobeams with dual-phase-lag heat conduction. Mech Based Des Struct Mach. 2021. https://doi.org/10.1080/15397734.2021.1987261.
  • 10. Civalek Ö, Uzun B, Yaylı MÖ, Akgöz B. Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur Phys J Plus. 2020;135(4):381.
  • 11. Sarparast H, Alibeigloo A, Borjalilou V, Koochakianfard O. Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects. Arch Civ Mech Eng. 2022;22(4):1-28.
  • 12. Abouelregal AE. Modeling and analysis of a thermoviscoelastic rotating micro-scale beam under pulsed laser heat supply using multiple models of thermoelasticity. Thin-Walled Struct. 2022;174: 109150.
  • 13. Balali Dehkordi HR, Tadi Beni Y. Size-dependent coupled bending-torsional vibration of Timoshenko microbeams. Arch Civ Mech Eng. 2022;22(3):1-15.
  • 14. Yue X, Yue X, Borjalilou V. Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams. Arch Civ Mech Eng. 2021;21(3):1-20.
  • 15. Ebrahimi-Mamaghani A, Mirtalebi SH, Ahmadian MT. Magneto-mechanical stability of axially functionally graded supported nanotubes. Mater Res Express. 2020;6(12):12505.
  • 16. Ansari R, Gholami R, Rouhi H. Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Compos Struct. 2015;126:216-26.
  • 17. Xiao C, Zhang G, Hu P, Yu Y, Mo Y, Borjalilou V. Size-dependent generalized thermoelasticity model for thermoelastic damping in circular nanoplates. Waves Random Complex Media. 2021. https://doi.org/10.1080/17455030.2021.1968538.
  • 18. Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear fexural responses of functionally graded composite microplates with variable thickness. Arch Civ Mech Eng. 2021;21(3):1-19.
  • 19. Rao R, Ye Z, Yang Z, Sahmani S, Safaei B. Nonlinear buckling mode transition analysis of axial-thermal-electrical-loaded FG piezoelectric nanopanels incorporating nonlocal and couple stress tensors. Arch Civ Mech Eng. 2022;22(3):1-21.
  • 20. Dastjerdi S, Malikan M, Dimitri R, Tornabene F. Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment. Compos Struct. 2021;255: 112925.
  • 21. Karamanli A, Aydogdu M, Vo TP. A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model. Aerosp Sci Technol. 2021;111: 106550.
  • 22. Weng W, Lu Y, Borjalilou V. Size-dependent thermoelastic vibrations of Timoshenko nanobeams by taking into account dualphase-lagging efect. Eur Phys J Plus. 2021;136(7):1-26.
  • 23. Yi H, Sahmani S, Safaei B. On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions. Arch Civ Mech Eng. 2020;20(2):1-23.
  • 24. Li M, Cai Y, Fan R, Wang H, Borjalilou V. Generalized thermoelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells. Thin-Walled Struct. 2022;174: 109142.
  • 25. Ghayesh MH, Amabili M, Farokhi H. Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci. 2013;63:52-60.
  • 26. Safaei B. Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces. Eur Phys J Plus. 2021;136(6):1-16.
  • 27. Rao R, Sahmani S, Safaei B. Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch Civ Mech Eng. 2021;21(3):1-17.
  • 28. Ghayesh MH, Farokhi H, Farajpour A. Viscoelastically coupled in-plane and transverse dynamics of imperfect microplates. Thin-Walled Structures. 2020;150: 106117.
  • 29. Safaei B, Onyibo EC, Hurdoganoglu D. Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method. Facta Universitatis. Series: Mechanical Engineering; 2022.
  • 30. Huang Y, Karami B, Shahsavari D, Tounsi A. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Archives of Civil and Mechanical Engineering. 2021;21(4):1-15.
  • 31. Safaei B. The effect of embedding a porous core on the free vibration behavior of laminated composite plates. Steel and Composite Structures, An International Journal. 2020;35(5):659-70.
  • 32. Li M, Cai Y, Bao L, Fan R, Zhang H, Wang H, Borjalilou V. Analytical and parametric analysis of thermoelastic damping in circular cylindrical nanoshells by capturing small-scale efect on both structure and heat conduction. Archives of Civil and Mechanical Engineering. 2022;22(1):1-16.
  • 33. Safaei B, Fattahi AM. Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models. Mechanics. 2017;23(5):678-87.
  • 34. Farajpour A, Farokhi H, Ghayesh MH, Hussain S. Nonlinear mechanics of nanotubes conveying fluid. Int J Eng Sci. 2018;133:132-43.
  • 35. Safaei B, Fattahi AM, Chu F. Finite element study on elastic transition in platelet reinforced composites. Microsyst Technol. 2018;24(6):2663-71.
  • 36. Safaei B, Naseradinmousavi P, Rahmani A. Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression. J Mol Graph Model. 2016;65:43-60.
  • 37. Ghayesh MH, Farokhi H, Amabili M. Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos B Eng. 2013;50:318-24.
  • 38. Borjalilou V, Asghari M. Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model. Acta Mech. 2018;229(9):3869-84.
  • 39. Sun, J., Sahmani, S., & Safaei, B. (2022). Nonlinear dynamical instability characteristics of FG piezoelectric microshells incorporating nonlocality and strain gradient size dependencies. International Journal of Structural Stability and Dynamics, 2350074.
  • 40. Farokhi H, Ghayesh MH. Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int J Eng Sci. 2015;91:12-33.
  • 41. Gholipour A, Farokhi H, Ghayesh MH. In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn. 2015;79(3):1771-85.
  • 42. Hosseini SAA, Khadem SE. Analytical solution for primary resonances of a rotating shaft with stretching non-linearity. Proc Inst Mech Eng C J Mech Eng Sci. 2008;222(9):1655-64.
  • 43. Hashemi M, Asghari M. Investigation of the small-scale effects on the three-dimensional flexural vibration characteristics of a basic model for micro-engines. Acta Mech. 2015;226(9):3085-96.
  • 44. Hashemi M, Asghari M. Analytical study of three-dimensional flexural vibration of micro-rotating shafts with eccentricity utilizing the strain gradient theory. Meccanica. 2016;51(6):1435-44.
  • 45. Fang J, Gu J, Wang H. Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modified couple stress theory. Int J Mech Sci. 2018;136:188-99.
  • 46. Fang J, Yin B, Zhang X, Yang B. Size-dependent vibration of functionally graded rotating nanobeams with different boundary conditions based on nonlocal elasticity theory. Proc Inst Mech Eng C J Mech Eng Sci. 2022;236(6):2756-74.
  • 47. Guo S, He Y, Liu D, Lei J, Li Z. Dynamic transverse vibration characteristics and vibro-buckling analyses of axially moving and rotating nanobeams based on nonlocal strain gradient theory. Microsyst Technol. 2018;24(2):963-77.
  • 48. Hao-nan L, Cheng L, Ji-ping S, Lin-quan Y. Vibration analysis of rotating functionally graded piezoelectric nanobeams based on the nonlocal elasticity theory. Journal of Vibration Engineering & Technologies. 2021;9(6):1155-73.
  • 49. Hashemi M, Asghari M. On the size-dependent flexural vibration characteristics of unbalanced couple stress-based micro-spinning beams. Mech Based Des Struct Mach. 2017;45(1):1-11.
  • 50. Ouakad HM, Sedighi HM, Al-Qahtani HM. Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects. Advances in nano research. 2020;8(3):245-54.
  • 51. Jahangiri M, Asghari M. The strain gradient-based torsional vibration analysis of micro-rotors with nonlinear flexural-torsional coupling. Appl Math Comput. 2023;440: 127541.
  • 52. Malik M, Das D. Free vibration analysis of rotating nano-beams for fap-wise, chord-wise and axial modes based on Eringen’s nonlocal theory. Int J Mech Sci. 2020;179: 105655.
  • 53. Asghari M, Hashemi M. Flexural vibration characteristics of micro-rotors based on the strain gradient theory. Int J Appl Mech. 2015;7(05):1550075.
  • 54. Nayfeh AH, Mook DT. Nonlinear oscillations. Wiley; 2008.
  • 55. Spakovszky ZS. High-speed gas bearings for micro-turbomachinery. In: Multi-wafer rotating MEMS machines. Boston: Springer; 2009. p. 191-278.
  • 56. Ru CQ, Aifantis E. A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 1993;101(1):59-68.
  • 57. Asghari M, Hashemi M. The couple stress-based nonlinear coupled three-dimensional vibration analysis of microspinning Rayleigh beams. Nonlinear Dyn. 2017;87(2):1315-34.
  • 58. Armstrong EK. Rotordynamics prediction in engineering. Proc Inst Mech Eng. 1998;212(4):299.
  • 59. Zorzi ES, Nelson HD. Finite element simulation of rotor-bearing systems with internal damping. 1977.
  • 60. Forrai L. Stability analysis of symmetrical rotor-bearing systems with internal damping using finite element method. In: Turbo Expo: Power for Land, Sea, and Air (Vol. 78767, p. V005T14A048). American Society of Mechanical Engineers 1996.
  • 61. Forrai L. A finite element model for stability analysis of symmetrical rotor systems with internal damping. JCAM. 2000;1(1):37-47.
  • 62. Nayfeh AH, Pai PF. Linear and nonlinear structural mechanics. Wiley; 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33ef2277-1204-4d77-8d3d-f7b0094efd59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.