PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis between a hybrid force/position and conventional controllers for a wrist exoskeleton

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study analyses the performances of various path controlling strategies for a 3-degrees of freedom wrist exoskeleton, by comparing key indicators, such as rise time, steady-state error, and implementation difficulty. A model was built to describe both system’s kinematics and dynamics, as well as 3 different controllers (PID, PD+, and a hybrid force/position controller) that were designed to allow each joint to perform smooth motions within anatomic ranges. The corresponding simulation was run and assessed via Matlab (version 2020a). In addition to the performance comparison, remarkable characteristics could be identified among controllers. PD+ showed higher response speed than the other controllers (about 4 times), and PID was reinforced as the technique with the easiest implementation due to the smallest matrices. The study also allowed to greater potential of the hybrid controller to interact with its environment, i.e., the robotic device.
Słowa kluczowe
Rocznik
Strony
409--427
Opis fizyczny
Bibliogr. 31 poz. fot., rys., tab., wzory
Twórcy
  • Davinci Research Group, Mechatronics Engineering, Militar Nueva Granada University, Cr 11 No 101-80, Bogotá, Colombia
  • Davinci Research Group, Mechatronics Engineering, Militar Nueva Granada University, Cr 11 No 101-80, Bogotá, Colombia
autor
  • Davinci Research Group, Mechatronics Engineering, Militar Nueva Granada University, Cr 11 No 101-80, Bogotá, Colombia
  • Davinci Research Group, Mechatronics Engineering, Militar Nueva Granada University, Cr 11 No 101-80, Bogotá, Colombia
  • Davinci Research Group, Mechatronics Engineering, Militar Nueva Granada University, Cr 11 No 101-80, Bogotá, Colombia
Bibliografia
  • [1] P. Agarwal and A.D. Deshpande: Impedance and force-field control of the index finger module of a hand exoskeleton for rehabilitation. IEEE International Conference on Rehabilitation Robotics (ICORR), (2015). DOI: 10.1109/ICORR.2015.7281180.
  • [2] H. Al-Fahaam, S. Davis, and S. Nefti-Meziani: Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators. International Conference for Students on Applied Engineering, ICSAE, (2017). DOI: 10.1109/ICSAE.2016.7810241.
  • [3] F. Amirabdollahian, S. Ates, A. Basteris, A. Cesario, J. Buurke, H. Hermens, D. Hofs, E. Johansson, G. Mountain, N. Nasr, S. Nijenhuis, G. Prange, N. Rahman, P. Sale, F. Schätzlein, B. Van Schooten, and A. Stienen: Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke - SCRIPT project. Robotica, 34(8), (2014), 1331-1346. DOI: 10.1017/S0263574714002288.
  • [4] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis: Motion control of a novel robotic wrist exoskeleton via pneumatic muscle actuators. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, (2015). DOI: 10.1109/ETFA.2015.7301464.
  • [5] J. Angeles: Fundamentals of Robotic Mechanical Systems. In Dispensa, (Fourth), Springer, 2007.
  • [6] J. Aponte: Integracion simultánea de aspectos cinemáticos y dinamicos para el diseńo optimo de un dispositivo para rehabilitacion de muńeca. Instituto Politécnico Nacional. 2021, (in Spanish).
  • [7] S. Ates, J. Lobo-Prat, P. Lammertse, H. Van Der Kooij, and A.H.A. Stienen: SCRIPT Passive Orthosis: Design and technical evaluation of the wrist and hand orthosis for rehabilitation training at home. IEEE International Conference on Rehabilitation Robotics, (2013). DOI: 10.1109/ICORR.2013.6650401.
  • [8] M. Ballesteros and J. Martinéz: Diseńo y construcción de un exoesqueleto de miembros inferiores que emula la marcha humana. Univesidad Militar Nueva Granada. 2015. http://hdl.handle.net/10654/13731. (in Spanish).
  • [9] A. Bautista and C. Aranguren: Diseńo, implementación y puesta en funcionamiento de un sistema de control de marcha humana para un exoesqueleto de miembro inferior. Universidad Militar Nueva Granada. (2015). http://hdl.handle.net/10654/13795. (in Spanish).
  • [10] J.H. Beekhuis, A.J. Westerveld, H. Van Der Kooij and A.H.A. Stienen: Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke. IEEE International Conference on Rehabilitation Robotics. (2013). DOI: 10.1109/ICORR.2013.6650357.
  • [11] P. Freni, E. Marina Botta, L. Randazzo and P. Ariano: Innovative hand exoskeleton design for extravehicular activities in space. In B. Pernici, S. Della Torre, B. Colosimo, T. Faravelli, R. Paolucci and S. Piardi (Eds.), Springer Briefs in Applied Sciences and Technology. Springer. (2014). DOI: 10.1007/978-3-319-03958-9.
  • [12] M. Haghshenas-Jaryani, R.M. Patterson, N. Bugnariu and M.B.J. Wijesundara: A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation. Journal of Hand Therapy, 33(2), (2020), 198-208. DOI: 10.1016/j.jht.2020.03.024.
  • [13] J. Hope and A. McDaid: Development of wearable wrist and forearm exoskeleton with shape memory alloy actuators. Journal of Intelligent and Robotic Systems: Theory and Applications. 86 (2017), 397-417. DOI: 10.1007/s10846-016-0456-7.
  • [14] I. Jo and J. Bae: Design and control of a wearable and force-controllable hand exoskeleton system. Mechatronics, 41 (2017), 90-101. DOI: 10.1016/j.mechatronics.2016.12.001.
  • [15] A. Karamali Ravandi, E. Khanmirza and K. Daneshjou: Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Applied Soft Computing Journal, 70 (2018), 864-874. DOI: 10.1016/j.asoc.2018.05.048.
  • [16] R. Kelly and V. Santibáńez: Control de movimiento de robots manipuladores. In I. Capella and M. Caicoya (Eds.), MMW Fortschritte der Medizin. Pearson. (2003).
  • [17] R. Kelly, V. Santibáńez and A. Loría: Control of robot manipulators in joint space. In M. Grimble and M. Johnson (Eds.), Review Literature And Arts Of The Americas. Springer, (2015).
  • [18] J. Lee, B.W. Song and W. Yang: Design of exoskeleton-type wrist human machine interface based on over-actuated coaxial spherical parallel mechanism. Advances in Mechanical Engineering. (2018). DOI: 10.1177/1687814017753896.
  • [19] E. Lerma, V. Baixauli, F. Selma and F. García: El papel de la rehabilitación tras las reparaciones de las inestabilidades de muńeca. Revista Iberoamericana de Cirugía de La Mano. (2016). DOI: 10.1016/j.ricma.2016.09.001. (in Spanish).
  • [20] H.S. Lo and S.Q. Xie: Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Medical Engineering and Physics, 34(3), (2012), 261-268. DOI: 10.1016/j.medengphy.2011.10.004.
  • [21] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy and S. Leonhardt: A survey on robotic devices for upper limb rehabilitation. Journal of NeuroEngineering and Rehabilitation, 11 (2014). DOI: 10.1186/1743-0003-11-3.
  • [22] F. Marini, V. Squeri, L. Cappello, P. Morasso, A. Riva, L. Doglio and L. Masia: Adaptive wrist robot training in pediatric rehabilitation. IEEE International Conference on Rehabilitation Robotics, (2015). DOI: 10.1109/ICORR.2015.7281195.
  • [23] K. Ogata: Ingenieria De Control Moderna. In M. Martín and E. Martín (Eds.), Prentice-Hall Hispanoamericana, S.A. Pearson. 2010. (in Spanish).
  • [24] J.L. Pons: Wearable Robots: Biomechatronic Exoskeletons (Issue 1). John Wiley & Sons. (2008). DOI: 10.16309/j.cnki.issn.1007-1776.2003.03.004.
  • [25] V. Prada, P. Nińo and O. Avilés: Control Híbrido control Fuerza-Posición para manipulador de 2 GDL (Vol. 1). Editorial academica espańola. 2012. (in Spanish).
  • [26] F. Reyes: Robótica - control de Robots manipuladores, F. Rodríguez and M. Grillo (Eds.), Alpha Omeg. 2016. (in Spanish).
  • [27] A.F. Ruiz-Olaya: Towards a robotic exoskeleton for remote evaluation of elbow and wrist joints. International Conference on Virtual Rehabilitation, ICVR. (2015). DOI: 10.1109/ICVR.2015.7358621.
  • [28] D. Serrano, D.S. Copaci, L. Moreno and D. Blanco: SMA based wrist exoskeleton for rehabilitation therapy. IEEE International Conference on Intelligent Robots and Systems. (2018). DOI: 10.1109/IROS.2018.8593987.
  • [29] B. Siciliano, L. Sciavicco, L. Villani and G. Oriolo: Robotics Modelling Planning and Control. In M. Grimble and M. Jonhson (Eds.). Springer. (2009). DOI: 10.1007/978-1-84628-642-1.
  • [30] L. Sutton, H. Moein, A. Rafiee, J.D.W. Madden andC. Menon: Design of an assistive wrist orthosis using conductive nylon actuators. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. (2016). DOI: 10.1109/BIOROB.2016.7523774.
  • [31] Z.G. Xiao, A.M. Elnady andC. Menon: Control an exoskeleton for forearm rotation using FMG. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. (2014). DOI: 10.1109/biorob.2014.6913842.
Uwagi
1. This work was supported by the Research Vice-Rectory of the Universidad Militar Nueva Granada - Colombia, through the project ING-IMP-3124.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33ee615a-9ba8-4676-9142-4ed7917d7583
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.