PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Average nutrient and chlorophyll distributions in the western Mediterranean : RADMED Project

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Because of its reduced dimensions and its location, surrounded by three continents, the Mediterranean Sea could be especially vulnerable to climate change effects. An increase of the water column stratification could inhibit winter mixing and reduce the frequency and intensity of convection processes which inject nutrients into the photic layer and are responsible for the ventilation of deep waters. In this context, the long-term monitoring of the Mediterranean waters is a basic task. The RADMED project is a monitoring program that covers the waters from the eastern side of the Gibraltar Strait to the Catalan and Balearic Seas. This project was initiated in 2007, merging some previous programs, some of them initiated in 1992. The main objective of this project is to establish average distributions, ranges of variability and long-term trends for physical, and biochemical variables which could be considered as indicative of the environment al state of the sea. The present work analyses nutrient, chlorophyll and oxygen time series from 2007 to 2015 in some cases and from 1992 in other cases. The current analyses show a clear trop hic gradient in the RADMED area. Nutrient and chlorophyll concentrations and the intensity of the deep chlorophyll maximum decrease northeastward. The deep chlorophyll maximum depth increases to the northeast. The Balearic and Catalan Seas show a clear seasonal pattern with maximum surface concentrations for nutrients and chlorophyll in winter/spring, associated with winter mixing. On the contrary, the Alboran Sea does not show such a clear seasonal cycle, probably because of the existence of permanent upwelling processes acting along the whole year. The Atlantic Water occupying the upper part of the water column shows a Redfield N:P ratio close to or lower than 16, indicating no phosphorus limitation. Finally, chlorophyll concentrations seem to have increased from 1992 to 2015 in the Alboran Sea, while no long term changes could be established for the rest of the variables and geographical areas.
Czasopismo
Rocznik
Strony
143--169
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Instituto Español de Oceanografía, C.O. Málaga (Fuengirola), Spain
  • Instituto Español de Oceanografía, C.O. Málaga (Fuengirola), Spain
  • Instituto Español de Oceanografía, C.O. Málaga (Fuengirola), Spain
  • Instituto Español de Oceanografía, C.O. Baleares, Spain
  • Universidad de Málaga. Departamento de Ecología, Spain
autor
  • Universidad de Málaga. Departamento de Ecología, Spain
  • Instituto Español de Oceanografía, C.O. Málaga (Fuengirola), Spain
autor
  • Instituto Español de Oceanografía, C.O. Baleares, Spain
Bibliografia
  • [1] Bethoux, J. P., Morin, P., Chaumery, C., Connan, O., Gentili, B., Ruiz-Pino, D., 1998. Nutrients in the Mediterranean Sea, mass balance and statistical analysis of concentrations with respect to environment al change. Mar. Chem. 63 (1-2), 155-169, http://dx.doi.org/10.1016/S0304-4203(98)00059-0.
  • [2] Bethoux, J. P., Morin, P., Ruiz-Pino, D. P., 2002. Temporal trends in nutrient ratios: chemical evidence of Mediterranean ekosystem changes driven by human activity. Deep-Sea Res. Pt. II 49 (11), 2007-2015, http://dx.doi.org/10.1016/S0967-0645(02)00024-3.
  • [3] Calvo, E., Simó, R., Coma, R., Ribes, M., Pacual, J., Sabatés, A., Gili, J. M., Pelejero, C., 2011. Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Clim. Res. 50 (1), 1-26, http://dx.doi.org/10.3354/cr01040.
  • [4] Coll, M., Piroddi, C., Albouy, C., Rais Lasram, F. B., Cheung, W. W. L., Christensen, V., Karpouzi, V. S., Guilhaumon, F., Mouillot, D., Paleczny, M., Palomeras, M. L., Steenbeek, J., Trujillo, P.,Watson, R., Pauly, D., 2011. The Mediterranean Sea under siege: spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21 (4), 465-480, http://dx.doi.org/10.1111/j.1466-8238.2011.00697.x.
  • [5] De Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., Iudicone, D., 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. 109 (C12), C12003, http://dx.doi.org/10.1029/2004JC002378.
  • [6] D'Ortenzio, F., Ribera d'Alcala, M., 2009. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6 (2), 139-148, http://dx.doi.org/10.5194/bg-6-139-2009.
  • [7] Echevarría, F., García-Lafuente, J., Bruno, M., Gorsky, G., Goutx, M., Gonzalez, N., García, C. M., Gómez, F., Vargas, J. M., Picheral, M., Striby, L., Varela, M., Alondo, J. J., Reul, A., Cózar, A., Prieto, L., Sarhan, T., Plaza, F., Jiménez-Gómez, F., 2002. Physical-biological coupling in the Strait of Gibraltar. Deep-Sea Res. II 49, 4115-4130, http://dx.doi.org/10.1016/S0967-0645(02)00145-5.
  • [8] Estrada, M., Latasa, M., Emelianov, M., Gutiérrez-Rodríguez, A., Fernández-Castro, B., Isern-Fontanet, J., Mouriño-Carballido, B., Salat, J., Vidal, M., 2014. Seasonal and mesoscale variability of primary production in the deep winter-mixing region of the NW Mediterranean. Deep-Sea Res. Pt. I 94, 45-61, http://dx.doi.org/10.1016/j.dsr.2014.08.003.
  • [9] Estrada, M., 1996. Primary production in the northwestern Mediterranean. Sci. Mar. 60 (Suppl. 2), 55-64.
  • [10] Garcia-Martinez, M. C., Vargas-Yañez, M., Moya, F., Zunino, P., Bautista, B., 2018. The effects of climate change and rivers damming in the Mediterranean Sea during the twentieth century. Int. J. Environ. Sci. Nat. Res. 8 (4), 555741, http://dx.doi.org/10.19080/IJESNR.2018.08.555741.
  • [11] Gasol, J. M., Cardelús, C., Anxelu, X., Morán, G., Balagué, V., Forn, I., Marrasé, C., Massana, R., Pedrós-Alió, C., Montserrat Sala, M., Simó, R., Vaqué, D., Estrada, M., 2016. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site. Sci. Mar. 80 (S1), 63-77, http://dx.doi.org/10.3989/scimar.04480.06E.
  • [12] Gómez, F., 2003. The role of the exchanges through the Strait of Gibraltar on the budgets of elements in the Western Mediterranean Sea: consequences of human-induced modifications. Mar. Pollut. Bull. 46 (6), 685-694, http://dx.doi.org/10.1016/S0025-326X(03)00123-1.
  • [13] Gómez, F., González, N., Echevarría, F., García, C. M., 2000. Distribution and fluxes of dissolved nutrients in the Strait of Gibraltar and its relation to microphytoplankton biomass. Estuar. Coast. Shelf Sci. 51 (4), 439-449, http://dx.doi.org/10.1006/ecss.2000.0689.
  • [14] Grasshof, K., Erhardt, M., Kremling, K., 1983. Methods of Seawater Analysis, 2nd edn. Verlag Chemie, Weinheim, 419 pp.
  • [15] Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., Strickland, J. D., 1965. Fluorometric determination of chlorophyll. J. Mar. Sci. 30 (1), 3-15, http://dx.doi.org/10.1093/icesjms/30.1.3.
  • [16] Huertas, I. E., Ríos, A. F., García-Lafuente, J., Navarro, G., Makaoui, A., Sánchez-Román, A., Rodríguez-Gálvez, S., Orbi, A., Ruiz, J., Pérez, F. F., 2012. Atlantic forcing of the Mediterranean oligotrophy. Global Biogeochem. Cycle 26 (2), GB2022, http://dx.doi.org/10.1029/2011GB004167.
  • [17] Labasque, T., Chaumery, C., Aminot, A., Kergoat, G., 2004. Spectrophotometric Winkler determination of DO: re-examination of critical factors and reliability. Mar. Chem. 88 (1-2), 53-60, http://dx.doi.org/10.1016/j.marchem.2004.03.004.
  • [18] Latasa, M., Gutiérrez-Rodríguez, A., Cabello, A. M., Scharek, R., 2016. Influence of light and nutrients on the vertical distribution of marine phytoplankton groups in the deep chlorophyll maximum. Sci. Mar. 80 (S1), 57-62, http://dx.doi.org/10.3989/scimar.04316.01A.
  • [19] Latasa, M., Scharek, R., Vidal, M., Vila-Reixach, G., Gutiérrez-Rodríguez, A., Emelianov, M., Gasol, J. M., 2010. Preferences of phytoplankton groups for waters of different trophic status in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 407, 27-42, http://dx.doi.org/10.3354/meps08559.
  • [20] Lavigne, H., D'Ortenzio, F., Ribera D'Alcalá, M., Claustre, H., Sauzède, R., Gacic, M., 2015. On the vertical distribution of the chlorophyll-a concentration in the Mediterranean Sea: a basin-scale and seasonal approach. Biogeosciences 12 (16), 5021-5039, http://dx.doi.org/10.5194/bg-12-5021-2015.
  • [21] L'Helguen, S., Le Corre, P., Madec, C., Morin, P., 2002. New and regenerated production in the Almería-Orán front area, eastern Alboran Sea. Deep-Sea Res. Pt. I 49 (1), 83-99, http://dx.doi.org/10.1016/S0967-0637(01)00044-9.
  • [22] Lomas, M. W., Lipschultz, F., 2006. Forming the primary nitrite maximum: nitrifyers or phytoplankton? Limnol. Oceanogr. 5 (15), 2453-2467, http://dx.doi.org/10.4319/lo.2006.51.5.2453.
  • [23] López-Jurado, J. L., Balbín, R., Amengual, B., Aparicio-González, A., Fernández de Puelles, M. L., García-Martínez, M. C., Gaza, M., Jansá, J., Morillas-Kieffer, A., Moya, F., Santiago, R., Serra, M., Vargas-Yáñez, M., Vicente, L., 2015. The RADMED monitoring program: towards an ecosystem approach. Ocean. Sci. 11 (6), 645-671, http://dx.doi.org/10.5194/osd-12-645-2015.
  • [24] López-Jurado, J. L., García-Lafuente, J., Cano Lucaya, N., 1995. Hydrographic conditions of the Ibiza Channel during November 1990, March 1991 and July 1992. Oceanol. Acta 18 (2), 235-243.
  • [25] Lorbacher, K., Dommenget, D., Niiler, P. P., Köhl, A., 2006. Ocean mixed layer depth: a subsurface proxy of ocean-atmosphere variability. J. Geophys. Res. 111 (C7), C07010, http://dx.doi.org/10.1029/2003JC002157.
  • [26] Macias, D., Bruno, M., Echevarrıia, F., Vazquez, A., Garcia, C. M., 2008. Meteorologically-induced mesoscale variability of the North-western Alboran Sea (southern Spain) and related biological patterns. Estuar. Coast. Shelf Sci. 78 (2), 250-266, http://dx.doi.org/10.1016/j.ecss.2007.12.008.
  • [27] Macías, D., García-Gorriz, E., Piroddi, C., Stips, A., 2014. Biogeochemical control of marine productivity in the Mediterranean Sea during the last 50 years. Global Biogechem. Cy. 28 (8), 897-907, http://dx.doi.org/10.1002/2014GB004846.
  • [28] Macías, D., García-Gorriz, E., Stips, A., 2018. Major fertilization mechanisms for Mediterranean Sea coastal ecosystems. Limnol. Oceanogr. 63 (2), 897-914, http://dx.doi.org/10.1002/lno.10677.
  • [29] Manca, B., Burca, M., Giorgetti, A., Coatanoan, C., García, M. J., Iona, A., 2004. Physical and biological averaged vertical profiles in the Mediterranean regions. An important tool to trace the climatology of water masses and to validate incoming data from operational oceanography. J. Mar. Syst. 48 (1-4), 83-116, http://dx.doi.org/10.1016/j.jmarsys.2003.11.025.
  • [30] Marty, J. C., Chiavérini, J., 2010. Hydrological changes in the Ligurian Sea (NW Mediterranean, DYFAMED site) during 1995-2007 and biogeochemical consequences. Biogeosciences 7 (7), 2117-2128, http://dx.doi.org/10.5194/bg-7-2117-2010.
  • [31] Marty, J. C., Chiavérini, J., 2002. Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea. Deep Sea Res. Pt. II 49 (11), 2017-2030, http://dx.doi.org/10.1016/S0967-0645(02)00025-5.
  • [32] Millot, C., 1999. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20 (1-4), 423-442, http://dx.doi.org/10.1016/S0924-7963(98)00078-5.
  • [33] Minas, H. J., Coste, B., Le Corre, P., Minas, M., Raimbault, P., 1991. Biological and geochemical signatures associated with the wáter circulation through the Starit of Gibraltar and the Western Alboran Sea. J. Geophys. Res. 96 (C5), 8755-8771.
  • [34] Morán, X. A., Estrada, M., 2001. Short-term variability of photosynthetic parameters and particulate and dissolved primary production in the Alboran Sea (SW Mediterranean). Mar. Ecol. Prog. Ser. 212, 53-67, http://www.jstor.org/stable/24864175.
  • [35] Pai, S.-C., Gong, G.-C., Liu, K.-K., 1993. Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine. Mar. Chem. 41 (4), 343-351, http://dx.doi.org/10.1016/0304-4203(93)90266-Q.
  • [36] Pasqueron de Fommervault, O., Migon, C., D'Ortenzio, F., Ribera d'Alcalà, M., Coppola, L., 2015. Temporal variability of nutrient concentrations in the northwestern Mediterranean sea (DYFAMED time-series station). Deep-Sea Res. Pt. I 100, 1-12, http://dx.doi.org/10.1016/j.dsr.2015.02.006.
  • [37] Pinot, J. M., Ganachaud, A., 1999. The role of winter intermedia te waters in spring-summer circulation of the Balearic Sea: 1. Hydrography and inverse modeling. J. Geophys. Res. 104 (C12), 29843-29864, http://dx.doi.org/10.1029/1999JC900071.
  • [38] Pinot, J. M., Tintoré, J., Gomis, D., 1995. Multivariate analysis of the surface circulation in the Balearic Sea. Prog. Oceanogr. 36 (4), 345-376, http://dx.doi.org/10.1016/0079-6611(96)00003-1.
  • [39] Powley, H. R., Cappellen, P. V., Krom, M. D., 2017. Nutrient cycling in the Mediterranean Sea: the key to understanding how the unique marine ecosystem functions and responds to anthropogenic pressures. In: Fuerst-Bjeliš, B. (Ed.), Mediterranean Identities — Environment, Society, Culture. InTech, 47-77, http://dx.doi.org/10.5772/intechopen.70878.
  • [40] Pujo-Pay, M., Conan, P., Oriol, L., Cornet-Barthaux, V., Falco, C., Ghiglione, J. F., Goyet, C., Moutin, T., Prieur, L., 2011. Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences 8 (4), 883-899, http://dx.doi.org/10.5194/bg-8-883-2011.
  • [41] Ramírez, T., Cortés, D., Mercado, J. M., Vargas-Yáñez, M., Sebastián, M., Liger, E., 2005. Seasonal dynamics of inorganic nutrients and phytoplankton biomass in the NW Alboran Sea. Estuar. Coast. Shelf Sci. 65 (4), 654-670, http://dx.doi.org/10.1016/j.ecss.2005.07.012.
  • [42] Ravaioli, M., Bergami, C., Riminucci, F., Langone, L., Cardin, V., Di Sarra, A., Aracri, S., Bastianini, M., Bensi, M., Bergamasco, A., Bommarito, C., Borghini, M., Bortoluzzi, G., Bozzano, R., Cantoni, C., Chiggiato, J., Crisafi, E., D'Adamo, R., Durante, S., Fanara, C., Grilli, F., Lipizer, M., Marini, M., Miserocchi, S., Paschini, E., Penna, P., Pensieri, S., Pugnetti, A., Raicich, F., Schroeder, K., Siena, G., Specchiulli, A., Stanghellini, G., Vetrano, A., Crise, A., 2018. The RITMARE Italian fixed-point observatory network (IFON) for marine environmental monitoring: a case study. J. Oper. Oceanogr. 9 (Suppl. 1), s202-s214, http://dx.doi.org/10.1080/1755876X.2015.1114806.
  • [43] Reul, A., Rodríguez, V., Jiménez-Gómez, F., Blanco, J. M., Bautista, B., Sarhan, T., Guerrero, F., Ruiz, J., García-Lafuente, J., 2005. Variability in the spatio-temporal distribution and size-structure of phytoplankton across an upwelling area in the NW-Alboran Sea (W-Mediterranean). Cont. Shelf Res. 25 (5-6), 589-608, http://dx.doi.org/10.1016/j.csr.2004.09.016.
  • [44] Ruiz, J., Echevarría, F., Font, J., Ruiz, S., García, E., Blanco, J. M., Jiménez-Gómez, F., Prieto, L., González-Alaminos, A., García, C. M., Cipollini, P., Snaith, H., Bartual, A., Reul, A., Rodríguez, V., 2001. Surface distribution of chlorophyll, particles and gelbstoff in the Atlantic jet of the Alborán Sea: from submesoscale to subinertial scales of variability. J. Mar. Syst. 29 (1-4), 277-292, http://dx.doi.org/10.1016/S0924-7963(01)00020-3.
  • [45] Sarhan, T., Garcia-Lafuente, J., Vargas, M., Vargas, J. M., Plaza, F., 2000. Upwelling mechanisms in the northwestern Alboran Sea. J. Mar. Syst. 23 (4), 317-331, http://dx.doi.org/10.1016/S0924-7963(99)00068-8.
  • [46] Schmidtko, S., Stramma, L., Visbeck, M., 2017. Decline in global oceanic content during the past five decades. Nature 542, 335-339, http://dx.doi.org/10.1038/nature21399.
  • [47] Schroeder, K., Gasparini, G. P., Borghini, M., Cerrati, G., Delfanti, R., 2010. Biogeochemical tracers and fluxes in the Western Mediterranean Sea, spring 2005. J. Mar. Syst. 80 (1-2), 8-24, http://dx.doi.org/10.1016/j.jmarsys.2009.08.002.
  • [48] Segura-Noguera, M., Cruzado, A., Blasco, D., 2016. The biogeochemistry of nutrients, dissolved oxygen and chlorophyll-a in the Catalan Sea (NW Mediterranean Sea). Sci. Mar. 80 (S1), 39-56, http://dx.doi.org/10.3989/scimar.04309.20A.
  • [49] Sournia, A., 1973. La production primaire planctonique en Méditerranée: Essai de mise à jour. Bulletin de l'Etude en commun de la Méditerranée 5-128.
  • [50] Strickland, J. D. H., Parsons, T., 1972. A practical handbook of seawater analysis. B. Fish. Res. Board Can. 167, 310 pp., http://dx.doi.org/10.1002/iroh.19700550118.
  • [51] Tel, E., Balbín, R., Cabanas, J. M., García, M. J., García-Martínez, M. C., González-Pola, C., Lavín, A., López-Jurado, J. L., Rodríguez, C., Ruiz-Villareal, M., Sánchez-Leal, R. F., Vargas-Yáñez, M., Vélez-Belchi, P., 2016. IEOOS: The Spanish Institute of Oceanography Observing System. Ocean Sci. 12 (2), 345-353, http://dx.doi.org/10.5194/os-12-345-2016.
  • [52] Thingstad, T. F., Krom, M. D., Mantoura, R. F. C., Flaten, G. A. F., Groom, S., Herut, B., Kress, N., Law, C. S., Pasternak, A., Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T., Tselepides, A., Wassmann, P., Woodward, E. M. S., Wexels Riser, C., Zodiatis, G., Zohary, T., 2005. Nature of phosphorus limitation in the ultraoligotrophic Eastern Mediterranean. Science 309, 1068-1071, http://dx.doi.org/10.1126/science.1112632.
  • [53] Treguer, P., Le Corre, P., 1975. Manuel d'analyse des sels nutritifs dans l'eau de mer, Utilisation de l'AutoAnalyser II Technicon, Occidentale, Vol. 5. Univ. Bretagne, Laboratoire de Chimie Marine, Brest, France, 110 pp.
  • [54] Vargas-Yáñez, M., García-Martínez, M. C., Moya, F., Balbín, R., López-Jurado, J. L., Serra, M., Zunino, P., Pascual, J., Salat, J., 2017. Updating temperature and salinity mean values and trends in The Western Mediterranean: The RADMED Project. Prog. Oceanogr. 157, 27-46, http://dx.doi.org/10.1016/j.pocean.2017.09.004.
  • [55] Vargas-Yáñez, M., Zunino, P., Schroeder, K., López-Jurado, J. L., Plaza, F., Serra, M., Castro, C., García-Martínez, M. C., Moya, F., Salat, J., 2012. Extreme western intermediate water formation in winter 2010. J. Mar. Syst. 105-108, 52-59, http://dx.doi.org/10.1016/j.jmarsys.2012.05.010.
  • [56] Zar, J. H., 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Inc., Englewood Cliffs, 718 pp.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33ebfbc3-f9ce-4146-949f-b31d25110f37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.