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Abstract. In this paper, there were investigated topological algorithms to solve the inverse problem in electrical tomography. The level set method, 
material derivative, shape derivative and topological derivative are based on shape and topology optimization approach to electrical impedance 

tomography problems with piecewise constant conductivities. The cost of the numerical algorithm is enough good, because the shape is captured on a fixed 

grid. The proposed solution is initialized by using topological sensitivity analysis. Shape derivative and material derivative (or topological derivative) have 
been incorporated with level set methods to investigate shape optimization problems. 
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ALGORYTMY TOPOLOGICZNE DO ROZWIĄZYWANIA ZAGADNIENIA ODWROTNEGO 

W TOMOGRAFII ELEKTRYCZNEJ 

Streszczenie. W artykule przedstawiono algorytmy topologiczne do rozwiązania problemu odwrotnego w tomografii elektrycznej. Metoda zbiorów 

poziomicowych, pochodna materialna, pochodna kształtu i pochodna topologiczna zostały oparte na topologii optymalizacji kształtu do rozwiązania 

odwrotnego w elektrycznej tomografii impedancyjnej. Koszt algorytmu numerycznego jest wystarczająco dobry, ponieważ kształt jest osadzony na stałej 
siatce. Proponowany algorytm inicjowano za pomocą topologicznej analizy wrażliwościowej. Pochodna kształtu, pochodna materialna (lub pochodna 

topologiczna) zostały połączone z metodą zbiorów poziomicowych do badania problemów optymalizacji kształtu. 

Słowa kluczowe: metody topologiczne, zagadnienie odwrotne, metoda elementów skończonych, tomografia impedancyjna 

Introduction 

In this paper there was investigated the application of the 

topological algorithm for the topology optimization based on 

shape derivative, material derivative or topological derivative. 

Numerical methods of the shape and the topology optimization 

were based on the level set representation and there were made 

possible topology changes during the optimization process [1, 3, 

14, 15, 16]. Level set methods have been applied very successfully 

in many areas of the scientific modelling, for example in 

propagating fronts and interfaces [3, 4, 6–8, 18]. Therefore, they 

are used to study shape optimization problems. Instead of using 

the physically driven velocity, the level set method typically 

moves the surfaces by the gradient flow of an energy functional. 

These approaches based on shape sensitivity include the boundary 

design of elastic. There are two features that make these methods 

suitable for the topology optimization. The structure is represented 

by an implicit function such that its zero level set defines the 

boundary of the object. This function is often discretized on a 

regular grid that conveniently coincides with the finite or 

boundary element mesh used for structural analysis. The next 

valid feature is the simple update of the implicit function using the 

Hamilton-Jacobi equation, where the velocity function is 

determined by the shape sensitivity of the structure. These 

properties enable natural topology changes. The discussed 

technique can be applied to the solution of inverse problems in 

electrical impedance tomography [5, 9–13, 17]. 

1. Numerical Methods 

1.1. Level Set Method 

Level set methods have been applied very successfully in 

many areas of the scientific modelling, for example in propagating 

fronts and interfaces (Fig. 1). Therefore, they are used to study 

shape optimization problems. Instead of using the physically 

driven velocity, the level set method typically moves the surfaces 

by the gradient flow of an energy functional. These approaches 

based on shape sensitivity include the boundary design of elastic. 

There are two features that make these methods suitable for the 

topology optimization. The structure is represented by an implicit 

function such that its zero level set defines the boundary of the 

object.  

Figure 2 presents six algorithms of the level set methods: the 

level set method, the parametric level set method, the Mumford-

Shah model, the variational level set methods, the Mumford-Shah 

variational level set methods, the Levenberg–Marquardt level set 

method. 

 

Fig. 1. The idea of the level set function 

 

Fig. 2. The reconstruction methods 

The representation of the level set method was shown in 

Figure 1. The level set function ϕ has the following properties: 

  ( ⃗  )        (   )   ( )   ( )  
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  ( ⃗  )        (   )   ( ) 
The motion is seen as the convection of values (levels) from 

the function   with the velocity field  ⃗ Such process is described 

by the Hamilton-Jacobi equation: 

 
  

  
  ⃗       (2) 

Here  ⃗  is the desired velocity on the interface, and is arbitrary 

elsewhere. Actually, only the normal component of  ⃗ is needed 

    ⃗   ⃗⃗   ⃗     |  |, so (2) becomes: 
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There can update the level set function   by solving 

discretized version of the Hamilton-Jacobi equation: 

 
       

  
    

  |   |    (4) 

Transforming above equation: 

           
  |   |   (5) 

The gradient of the level set function in the k-th time step 

(|   |) has been calculated by the essentially non-oscillatory 

(ENO) polynomial interpolation scheme. The stability of received 

solution is achieved by Courant-Friedreichs-Lewy condition (CFL 

condition): 

    
   (     )

   (| ⃗⃗|)
 (6) 

Inequality (6) is satisfied by choosing the CFL number α: 

   
   (| ⃗⃗|)

   (     )
   (7) 

where 0 < α < 1. The optimum value equals 0.9: 

The calculated velocity must be extended off the interface to 

the whole domain. This process is called the extension of velocity 

and is based on the solution of the additional partial differential 

equation: 

 
   

  
  ( )
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where  ( ) is defined as following: 

  ( )  
 

√     
 (9) 

In (9) | |   . Additionally, the velocity is extended to 

neighborhood of the interface, by defining velocity along normal 

direction. 

Reinitialization is necessary when flat or steep regions 

complicate the determination of the zero contour. The level set 

function ϕ is signed distance function if at given time for every 

point (x,y): 

 |  |    (10) 

Reinitialization is based on replacing ϕ by another function 

that has the same zero level set, but satisfies condition.  

In the level set representation, the interface, which is the set of 

points (x,y) satisfying  (   )    is not explicitly given. There is 

only information  (     ) at each grid point. 

When flat or steep regions complicate the determination of the 

contour, reinitialization is necessary. The reinitialization 

procedure is based by replacing   by another function that has the 

same zero level set but behaves better. This is based on following 

partial differential equation: 
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where  ( ) is defined as: 

  ( )  {
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1.2. Material derivative and shape derivative 

The topological method is based on so-called conical 

differentiability of solutions to variational inequalities with respect 

to the coefficients of the governing differential operator. It is 

required that the metric projection in the energy space. Such 

property is sufficient to obtain the directional differentiability of 

solutions to the variational inequality with respect to the boundary 

variations with respect to the changes in the topology by the 

creation of a small object. A useful concept for calculating 

derivatives for cost functional is the so-called material and shape 

derivative of states u. In the application of inverse problems, these 

states typically are the solutions of partial differential equations 

which model the probing fields and which depend one way or 

another on the shape. 

Let λ be the adjoint function satisfying: 

          (13) 

The material derivative concept is applied to the formulation 

of an inverse obstacle problem. This is the derivative with respect 

to the geometry for a moving interface. The material derivative 

 ̇( ⃗) is given by: 

  ̇( ⃗)        
  ( ⃗   ⃗⃗( ⃗))  ( ⃗)

 
 (14) 

where (   )   .  

The shape derivative concept is extended by material 

derivatives. This method is based on the fact that the definition of 

shape derivatives is presented to differentiate boundary and 

domain integrals with respect to a deformation of the contour. The 

shape derivative is defined as below: 

   ( ⃗)        
  ( ⃗)  ( ⃗)

 
  ̇( ⃗)   ⃗( ⃗)    ( ⃗) (15) 

The steepest descent direction  ⃗ is given by: 

  ⃗   (     ) ⃗⃗ (16) 

The normal velocity is evaluated by using weighted least 

squares interpolation to get: 

   
              (17) 

In next step the level set function is updated: 

         (           )|   |   (18) 

where    is obtained from CFL condition (11). 

1.3. Topological derivative 

Topological derivative (TD) is defined as the first term of the 

asymptotic expansion of a given shape functional (with expect to a 

small parameter that measures the size of singular domain 

perturbation). Topological derivative evaluates for a given shape 

functional defined in a geometrical domain and dependent on a 

classical solution to elliptic boundary value problem (Fig. 3). 

 

Fig. 3. The idea of topological derivative 

Topological derivative represents the change of the shape 

(functional) when the domain is perturbed by holes, inclusions, 

defects or cracks. Shape derivative is defined as a minimization of 

a given shape functional (Fig. 4). 

 

Fig. 4. The idea of shape derivative 

 

Fig. 5. Topological derivative – the small hole 

Perforation of the domain by creating small holes inside Ω 

was presented in Figure 5. Figure 6 shows the domain with 

searched objects. 
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Fig. 6. The domain with searched objects 

Topological derivative using the level set function to solve the 

inverse problem in electrical impedance tomography. Velocity in 

Hamilton-Jacobi equation is defined following: 

     [(    )(      )   |    | ]       (19) 

Laplace’a equaton is described as: 

                                           
                         (20) 

The adjoint equation is following: 

                  (    )       
                                           (21) 

 
Fig. 7. The iterative algorithm – the inverse problem 

For some    , the topological derivative    is defined as 

    ( |  
   |)

  
∑     

 
    (22) 

The algorithm is initialized by      and 

    {    |   ( )           ( )} (23) 

where       is a given threshold. 

 

The proposed algorithm (Fig. 7): 

 define a domain Ω for the shape optimization, 

 define a shape functional, 

 solve the forward problem, 

 calculate the topological derivative and the shape gradient, 

 create small holes, 

 deform the boundary, 

 solve forward problem in new domain and calculate the shape 

functional, 

 minimization  (   ) (go to the step create small holes or 

finish the process). 

2. Electrical Impedance Tomography 

There were proposed algorithms based on level set function to 

solve the inverse problem in electrical impedance tomography. 

The conductivity values in different regions are determined by the 

finite element method. Numerical iterative algorithm is a 

combination of the level set methods for following the evolving 

step edges and the finite element method for computing the 

velocity. The objective function is defined as the difference 

between the potential due to the applied current and the measured 

potential.  

 
Fig. 8. The iterative algorithm – EIT 

For the minimization problem, the level set method and the 

topological gradient method has been proposed. Both methods are 

gradient-type algorithms, and the coupled approach can be cast 

into the framework of alternate directions descent algorithms. The 

level set method relies on shape derivative, while the topological 

gradient method is based on the topological derivative or material 

derivative.  

The proposed algorithm is iterative method, structured as 

follows (Fig.8): 

 from the level set function at initial time, find necessary 

interface information; 

 use the Finite/Boundary Element Method to solve the 

Laplace’s equation and next compute the difference of the 

obtained solution with the observed data; 

 solve the Poisson’s equation (adjoint equation); 

 find velocity in the normal direction; 

 update the level set function; 

 reinitialize the level set function. 

3. Results 

In examples reported below, several numerical models are 

presented. Additionally, there was present different geometries of 

the conductivity distributions. The conductivity of searched 

objects is known. The representation of the boundary shape and its 

evolution during an iterative reconstruction process is achieved by 

the level set method and the gradient method coupled together. In 

forward problem, which is given by Laplace’s equation, the finite 

element method has been used. Additionally, different zero level 

set functions have been selected. 
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Fig. 9. The image reconstruction with the different zero level set function (red line – 

zero level set, bold red line – reconstructed object, blue line – original object, green 

line – steps of reconstruction) 

Figure 9 presents the image reconstruction with the different 

zero level set function (red line – zero level set, bold red line – 

reconstructed object, blue line – original object, green line – steps 

of reconstruction). Figure 10 shows the two images: (a) the 

original objects and the zero contour from the level set function 

and (b) the process of the image reconstruction. 

a)  b)  

Fig. 10. Images reconstruction: a) the original objects and the zero contour from the 

level set function; b) the process of the image reconstruction 

4. Conclusion 

The algorithms based on material and shape derivative, 

topological derivative and the level set method have been 

proposed in this work. There are iterative algorithms where the 

shape boundary evolves smoothly and new small objects are 

detected. An efficient algorithm for solving the forward and 

inverse problems would also improve a lot of the numerical 

performances of the proposed methods. In model problem from 

EIT is required to identify unknown conductivities from near-

boundary measurements of the potential. The number of iterations 

determine the position and shape of zero level set functions. In 

these algorithms, it can control the process of the image 

reconstruction. The level set function techniques have been shown 

to be successful to identify the unknown boundary shapes. The 

accuracy of the image reconstruction is better than gradient 

methods. The purpose of the presented method is obtaining the 

better image reconstruction than gradient methods and accelerates 

the iterative process by using different shapes of the zero level set 

functions. Applying the line measurement model is very effective 

to solve the inverse problem in the copper-mine ceiling and flood 

embankment. The right selection of the zero level set function 

gives the better results, reduces the time of the reconstruction 

process and improves the better quality of the image 

reconstruction. 
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