PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The complexity of the hardware and the amount of data collected during the PET imaging process require application of modern methods of efficient data organization and processing. In this article, we will discuss the data structures and the flow of collected data from the novel TOF-PET medical scanner that is being developed at the Jagiellonian University. The developed data format reflects the registration process of the γ quanta emitted from positron electron annihilation, front-end electronic structure, and required input information for the image reconstruction. In addition, the system database fulfills possible demands of the evolving J-PET project.
Rocznik
Strony
79--83
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Chemistry, Jagiellonian University, Kraków, Poland
  • Faculty of Chemistry, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Świerk Computing Centre, National Centre for Nuclear Research, Otwock-Swierk, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Chemistry, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Świerk Computing Centre, National Centre for Nuclear Research, Otwock-Swierk, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Świerk Computing Centre, National Centre for Nuclear Research, Otwock-Swierk, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
Bibliografia
  • 1. Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. EurJ Nucl Med Mol Imaging 2003:30:1574.
  • 2. Conti M. State of the art and challenges of time-of-flight PET. Phys Med 2009;25:l-ll.
  • 3. Townsend DW. Multimodality imaging of structure and function. Phys Med Biol 2008;53:Rl-39.
  • 4. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 2008;49:462-70.
  • 5. Townsend DW. Physical principles and technology of clinical pet imaging. Ann Acad Med Singapore 2004;22:133.
  • 6. Moskal P, Salabura P, Silarski M, Smyrski J, Zdebik J, Zieliński M. Novel detector systems for the positron emission tomography. Bio-Algorithms Med-Syst 2011;7:73.
  • 7. Moskal P, Bednarski T, Białas P, Ciszewska M, Czerwiński E, Heczko A, et al. Strip-PET: a novel detector concept for the TOF-PET scanner. Nucl Med Rev 2012;15:C68-C69.
  • 8. Moskal P, Bednarski T, Białas P, Ciszewska M, Czerwiński E, Heczko A, et al.TOF-PET detector concept based on organic scintillators. Nucl Med Rev 2012;15:C81.
  • 9. Krzemień W, Silarski M, Stola K, Trybek D, Bednarski T, Białas P, et al. J-PET analysis framework for the prototype TOF-PET detector. Bio-Algorithms Med-Syst 2014;10:33-6.
  • 10. Wiślicki W, Bednarski T, Białas P, Czerwiński E, Kapłon Ł, Kochanowski A, et al. Computing support for advanced medical data analysis and imaging. Bio-Algorithms Med-Syst 2014;10:53-8.
  • 11. Korcyl G, Moskal P, Bednarski T, Białas P, Czerwiński E, Kapłon Ł, et al. Trigger-less and reconfigurable data acquisition system for positron emission tomography. Bio-Algorithms Med-Syst 2014:10:37-40.
  • 12. Pałka M, Bednarski T, Białas P, Czerwiński E, Kapłon Ł, Kochanowski A, et al. A novel method based solely on FPGA units enabling measurement of time and charge of analog signals in positron emission tomography. Bio-Algorithms Med-Syst 2014;10:41-5.
  • 13. A data analysis framework. Available at: http://root.cern.ch. Accessed on February 15, 2014.
  • 14. Silarski M, Czerwiński E, Bednarski T, Moskal P, Białas P, Kapłon Ł, et al. A novel method for calibration and monitoring of time synchronization of TOF-PET scanners by means of cosmic rays. Bio-Algorithms Med-Syst 2014:10:19-25.
  • 15. Bednarski T, Czerwiński E, Moskal P, Białtas P, Giergiel K, Kapłon Ł, et al. Calibration of photomultipliers gain used in the J-PET detector. Bio-Algorithms Med-Syst 2014;10:13-17.
  • 16. Raczyński L, Moskal P, Kowalski P, Wiślicki W, Bednarski T, Białas P, et al. Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to the positron emission tomography. Bio-Algorithms Med-Syst 2014;10:41-5.
  • 17. Raczyński L, Czerwiński E, Moskal P, Białas P, Giergiel K, Kapłon Ł, et al. Application of compressive sensing theory for the reconstruction of signals in plastic scintillators. Ada Phys Polon B Suppl 2013;6:1021-7.
  • 18. Słomski A, Rudy Z, Bednarski T, Białas P, Czerwiński E, Kapłon Ł, et al. 3D PET image reconstruction based on MLEA/I algorithm. Bio-Algorithms Med-Syst 2014;10:l-7.
  • 19. Białas P, Kowal J, Strzelecki A, Bednarski T, Czerwiński E, Giergiel K, et al. List mode reconstruction in 2D strip PET. Bio-Algorithms Med-Syst 2014;10:l-12.
  • 20. Białas P, Kowal A, Strzelecki A, Bednarski T, Czerwiński E, Kapłon Ł, et al. System response kernel calculation for list-mode reconstruction in strip PET detector. Acta Phys Polon B Suppl 2013;6:1027-36.
  • 21. ECMA C# Language Specification, ECMA-334. Available at: http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf. Accessed on February 15, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33da58c8-382b-47df-b038-2a743158eafa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.