PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterization of hollow V2O5 microspheres for supercapacitor electrode with pseudocapacitance

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hollow V2O5 microspheres (HVOM) were fabricated using NH4VO3, ethylene glycol and carbon spheres as the starting materials by a template solvothermal approach and subsequent calcination. The morphology and composition were characterized by field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmet-Teller (BET). The results showed that the obtained HVOM were constructed from nanoparticles with rough surface. The electrochemical properties of HVOM as a supercapacitor electrode were investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD). HVOM displayed excellent pseudocapacitance property and their specific capacitances were 488 F·g–1, 455 F·g–1, 434 F·g–1 and 396 F·g–1 at the current density of 0.5 A·g–1, 1 A·g–1, 2 A·g–1 and 5 A·g–1, respectively. They also exhibited an excellent energy density of 8.784 × 105 J·kg–1 at a power density of 900 W·kg–1 . The good electrochemical properties of the as-synthesized HVOM make them a promising candidate as a cathode material for supercapacitors.
Wydawca
Rocznik
Strony
188--196
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • School of Chemistry, Dalian University of Technology, Dalian 116024, PR China
Bibliografia
  • [1] WINTER M., BRODD R.J., Chem. Rev., 104 (2004), 4245.
  • [2] YU Z., TETARD L., ZHAI L., THOMAS J., Energ. Environ. Sci., 8 (2015), 702.
  • [3] ZHANG Y., ZHENG J., ZHAO Y., HU T., GAO Z., MENG C., Appl. Surf. Sci., 377 (2016), 385.
  • [4] ZHANG Y., ZHENG J., HU T., TIAN F., MENG C., Appl. Surf. Sci., 371 (2016), 189.
  • [5] WU Y., GAO G., WU G., J. Mater. Chem. A, 3 (2015), 1828.
  • [6] ZHENG J., ZHANG Y., WANG N., ZHAO Y., TIAN F., MENG C., Mater. Lett., 171 (2016), 240.
  • [7] ZHANG L.L., ZHAO X.S., Chem. Soc. Rev., 38 (2009), 2520.
  • [8] ZHANG Y., TAN X., MENG C., Mater. Sci.-Poland, 33 (2015), 560.
  • [9] ZHANG Y., ZHANG J., ZHANG X., MO S., WU W., NIU F., ZHONG Y., LIU X., HUANG C., LIU X., J. Alloy. Compd., 570 (2013), 104.
  • [10] ZHANG Y., WANG N., HUANG Y., HUANG C., MEI X., MENG C., Mater. Sci.-Poland, 32 (2014), 236.
  • [11] ZHANG Y., LIU X., CHEN D., YU L., NIE J., YI S., LI H., HUANG C., J. Alloy. Compd., 509 (2011), L69.
  • [12] ZHANG Y., WANG N., HUANG Y., WU W., HUANG C., MENG C., Ceram. Int., 40 (2014), 11393.
  • [13] WEI J., JI H., GUO W., NEVIDOMSKYY A.H., NATELSON D., Nat. Nanotechnol., 7 (2012), 357.
  • [14] ZHANG Y., MENG C., Mater. Lett., 160 (2015), 404.
  • [15] ZHANG Y., Mater. Sci.-Poland, 34 (2016), 169.
  • [16] ZHANG Y., HUANG C., MENG C., HU T., Mater. Chem. Phys., 177 (2016), 543.
  • [17] ZHANG Y., HUANG Y., Mater. Lett., 182 (2016), 285.
  • [18] ZHANG Y., CHEN C., WU W., NIU F., LIU X., ZHONG Y., CAO Y., LIU X., HUANG C., Ceram. Int., 39 (2013), 129.
  • [19] ZHANG Y., ZHANG J., ZHANG X., DENG Y., ZHONG Y., HUANG C., LIU X., LIU X., MO S., Ceram. Int., 39 (2013), 8363.
  • [20] ZHANG Y., ZHANG J., ZHANG X., HUANG C., ZHONG Y., DENG Y., Mater. Lett., 92 (2013), 61.
  • [21] ZHANG Y., LIU X., XIE G., YU L., YI S., HU M., HUANG C., Mater. Sci. Eng. B-Adv., 175 (2010), 164.
  • [22] YANG J., LAN T., LIU J., SONG Y., WEI M., Electrochim. Acta, 105 (2013), 489.
  • [23] ZHU J., CAO L., WU Y., GONG Y., LIU Z., HOSTER H.E., ZHANG Y., ZHANG S., YANG S., YAN Q., AJAYAN P.M., VAJTAI R., Nano Lett., 13 (2013), 5408.
  • [24] WANG N., ZHANG Y., HU T., ZHAO Y., MENG C., Curr. Appl. Phys., 15 (2015), 493.
  • [25] UMESHBABU E., RANGA RAO G., J. Colloid Interf. Sci., 472 (2016), 210.
  • [26] WEE G., SOH H.Z., CHEAH Y.L., MHAISALKAR S.G., SRINIVASAN M., J. Mater. Chem., 20 (2010), 6720.
  • [27] SARAVANAKUMAR B., PURUSHOTHAMAN K.K., MURALIDHARAN G., ACS Appl. Mater. Inter., 4 (2012), 4484.
  • [28] MU J., WANG J., HAO J., CAO P., ZHAO S., ZENG W., MIAO B., XU S., Ceram. Int., 41 (2015), 12626.
  • [29] PAN A., WU H.B., YU L., LOU X.W., Angew. Chem., Int. Edit., 52 (2013), 2226.
  • [30] PAN A.Q., WU H.B., ZHANG L., LOU X.W., Energ. Environ. Sci., 6 (2013), 1476.
  • [31] SU D.W., DOU S.X., WANG G.X., J. Mater. Chem. A, 2 (2014), 11185.
  • [32] CHEN M., XIA X., YUAN J., YIN J., CHEN Q., J. Power Sources, 288 (2015), 145.
  • [33] SUN X., LI Y., Angew. Chem. Int. Edit., 43 (2004), 597.
  • [34] SARAVANAKUMAR B., PURUSHOTHAMAN K.K., MURALIDHARAN G., J. Electroanal. Chem., 758 (2015), 111.
  • [35] GILSON T.R., BIZRI O.F., CHEETHAM N., Dalton T., (1973) 291.
  • [36] DELMAS C., COGNAC-AURADOU H., COCCIANTELLI J.M., MENETRIER M., DOUMERC J.P., Solid State Ionics, 69 (1994), 257.
  • [37] QU Q.T., SHI Y., LI L.L., GUO W.L., WU Y.P., ZHANG H.P., GUAN S.Y., HOLZE R., Electrochem. Commun., 11 (2009), 1325.
  • [38] REDDY R.N., REDDY R.G., J. Power Sources, 156 (2006), 700.
  • [39] LAO Z.J., KONSTANTINOV K., TOURNAIRE Y., NG S.H., WANG G.X., LIU H.K., J. Power Sources, 162 (2006), 1451.
  • [40] JEYALAKSHMI K., VIJAYAKUMAR S., NAGAMUTHU S., MURALIDHARAN G., Mater. Res. Bull., 48 (2013), 760.
  • [41] LI H.-Y., WEI C., WANG L., ZUO Q.-S., LI X., XIE B., J. Mater. Chem. A, 3 (2015), 22892.
  • [42] ZHANG Y., FAN M., LIU X., HUANG C., LI H., Eur. J. Inorg. Chem., 2012 (2012), 1650.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33d7c237-c74a-4e8b-9138-ac4cc2a7dbde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.