Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Materials with so-called soft magnetic properties are an important object of material engineering research due to their potential application, among others, in the construction of low-loss transformer cores. Such properties are typical for alloys with an amorphous structure and with a high content of ferromagnetic elements: Fe, Co, Ni. Difficulties related with obtaining alloys which meet satisfactory dimensions result in the search for new solutions. One of them is the production of composites based on ferromagnetic powders obtained from amorphous alloys. This paper presents results of structure research for composite materials produced in a multi-stage production process. Magnetic composites were made on the basis of a bulk amorphous Fe70B20Y5Nb4Mo1 alloy produced by the injection method. On the basis of the obtained powder, two series of moldings were made: with 0.5% resin and covered with high-temperature varnish. Final composites were produced by using high temperature isostatic press. On the basis of the conducted research, it was found that the composites without resin are characterized by distinctly better magnetic properties as compared to resin-bonded composites.
Rocznik
Tom
Strony
art. no. e144608
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, al. Armii Krajowej 19c, 42-200 Czestochowa, Poland
autor
- Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, al. Armii Krajowej 19c, 42-200 Czestochowa, Poland
autor
- Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200 Czestochowa, Poland
Bibliografia
- [1] Y. Han et al., “New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application,” Intermetallics, vol. 76, pp. 18–25, 206, doi: 10.1016/j.intermet.2016.05.011.
- [2] C. Dong et al., “Soft magnetic properties of Fe82-83B14-15Si2 C0.5-1 amorphous alloys with high saturation magnetization above 1.7 T,” J. Non-Cryst. Solids, vol. 500, pp. 173–180, 2018, doi: 10.1016/j.jnoncrysol.2018.07.072.
- [3] F. Wang et al., “Excellent soft magnetic Fe-Co-B-based amorphous alloys with extremely high saturation magnetization above 1.85 T and low coercivity below 3 A/m,” J. Alloy. Compd., vol. 711, pp. 132–142, 2017, doi: 10.1016/j.jallcom.2017.03.341.
- [4] J. Wang, Z.W. Liu, Z.G. Zheng, H.Y. Yu, G.P. Tang, and D.C. Zeng, “Efect of rare earth additions on microstructure, thermal stability and crystallization behavior of melt spun Fe80.65Cu1.35Si2B14RE2 (RE=Y, Gd, Tb and Dy) soft magnetic alloys,” Mater. Lett., vol. 159, pp. 76–79, 2015, doi: 10.1016/j.matlet.2015.06.078.
- [5] Y. Han et al., “Fe-based soft magnetic amorphous alloys with high saturation magnetization above 1.5 T and high corrosion resistance,” Intermetallics, vol. 54, pp. 169–175, 2014, doi: 10.1016/j.intermet.2014.06.006.
- [6] Y. Han et al., “Softening and good ductility for nanocrystal-dispersed amorphous FeCoB alloys with high saturation magnetization above 1.7 T,” J. Alloy. Compd., vol. 657, pp. 237–245, 2016, doi: 10.1016/j.jallcom.2015.10.066.
- [7] S. Kwon, S. Kim, and H. Choi-Yim, “Effects of Fe Substitution for Co on the Thermal, Magnetic, and Mechanical Properties of the Co-Fe-B-Si-Mo alloy system,” Korean Phys. Soc., vol. 72, no. 1, pp. 171–176, 2018, doi: 10.3938/jkps.72.171.
- [8] D.D. Liang et al., “Sliding tribocorrosion behavior of Fe-based bulk metallic glass under corrosive environments,” J. Non-Cryst. Solids, vol. 510, pp. 62–70, 2019, doi: 10.1016/j.jnoncrysol.2018.12.024.
- [9] S. Wang, Y. Li, X. Wang, S. Yamaura, and W. Zhang, “Glass-forming ability, thermal properties, and corrosion resistance of Fe-based (Fe, Ni, Mo, Cr)-P-C-B metallic glasses,” J. Non-Cryst. Solids, vol. 476, pp. 75–80, 2017, doi: 10.1016/j.jnoncrysol.2017.09.028.
- [10] N. Hua et al., “Corrosive wear behaviors and mechanisms of a biocompatible Fe-based bulk metallic glass,” J. Non-Cryst. Solids, vol. 542, p. 120088, 2020, doi: 10.1016/j.jnoncrysol.2020.120088.
- [11] H.S. Chen and D. Turnbull, “Stability and structure of palladium-silicon based alloy glasses,” Acta Metallurgica, vol. 17, pp. 1021–1031, 1969, doi: 10.1016/0001-6160(69)90048-0.
- [12] H.S. Chen, “Thermodynamic considerations on the formation and stability of metallic glasses,” Acta Metallurgica, vol. 22, pp. 1505–1511, 1974, doi: 10.1016/0001-6160(74)90112-6.
- [13] X.M. Qin, J. Tan, C.J. Li, X.C. Wang, Y.H. Jiang, and R. Zhou, “On the formation, mechanical properties and crystallization behaviors of a Zr56Co24Al20 bulk metallic glass,” J. Alloy. Compd., vol. 647, pp. 204–208, 2015, doi: 10.1016/j.jallcom.2015.04.241.
- [14] J. Tan et al., “Formation of Zr-Co-Al bulk metallic glasses with high strength and large plasticity,” Intermetallics, vol. 31, pp. 282–286, 2012, doi: 10.1016/j.intermet.2012.08.003.
- [15] S.F. Guo, K.C. Chan, S.H. Xie, P. Yu, Y.J. Huang, and H.J. Zhang, “Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater,” J. Non-Cryst. Solids, vol. 369, pp. 29–33, 2013, doi: 10.1016/j.jnoncrysol.2013.02.026.
- [16] J. Pan, Q. Chen, N. Li, and L. Liu, “Formation of centimeter Fe-based bulk metallic glasses in low vacuum environment,” J. Alloy. Compd., vol. 463, pp. 246–249, 2008, doi: 10.1016/j.jallcom.2007.09.124.
- [17] A. Inoue, F.L. Kong, Q.K. Man, B.L. Shen, R.W. Li, and F. Al-Marzouki, “Development and applications of Fe- and Co-based bulk glassy alloys and their prospects,” J. Alloy. Compd., vol. 615, pp. S2–S8, 2014, doi: 10.1016/j.jallcom.2013.11.122.
- [18] S. Hasani, P. Rezaei-Shahreza, A.Seifoddini, and A. Hakimi, “Enhanced glass-forming ability, mechanical, and magnetic properties of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass with minor addition of Cu,” J. Non-Cryst. Solids, vol. 497, pp. 40–47, 2018, doi: 10.1016/j.jnoncrysol.2018.05.021.
- [19] P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani, “Non-isothermal kinetic analysis of nano-crystallization process in (Fe41Co7Cr15Mo14Y2C15)94B6 amorphous alloy,” Thermochim. Acta, vol. 652, pp. 119–125, 2017, doi: 10.1016/j.tca.2017.03.017.
- [20] P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani, “Thermal stability and crystallization process in a Fe-based bulk amorphous alloy: The kinetic analysis,” J. Non-Cryst. Solids, vol. 471, pp. 286–294, 2017, doi: 10.1016/j.jnoncrysol.2017.05.044.
- [21] Y. Geng et al., “Magnetic properties and a structuremodel for high Fe-content Fe–B–Si–Zr bulk glassy alloys,” J. Non-Cryst. Solids, vol. 450, pp. 1–5, 2016, doi: 10.1016/j.jnoncrysol.2016.07.032.
- [22] J. Zhou, W. Yang, C. Yuan, B. Sun, and B. Shen, “Ductile FeNi-based bulk metallic glasses with high strength and excellent soft magnetic properties,” J. Alloy. Compd., vol. 742, pp. 318–324, 2018, doi: 10.1016/j.jallcom.2018.01.317.
- [23] M. Nabiałek, “Reduced glass-transition temperature versus glass-forming ability in FeCoB-based amorphous alloys,” Arch. Metall. Mater., vol. 61, no 4, pp. 1957–1962, 2016, doi: 10.1515/amm-2016-0315.
- [24] B. Jeż, K. Jeż, and M. Nabiałek, “Magnetic Properties of Composites Based on Amorphous Iron Alloys Produced with the Use of a Non-Magnetic Binder and Covered with High Temperature Varnish,” IOP Conf. Series: Materials Science and Engineering, vol. 877, p. 012027, 2020, doi: 10.1088/1757-899X/877/1/012027.
- [25] A. Sahu, R.S. Maurya, S. Dinda, and T. Laha, “Phase Evolution-Dependent Nanomechanical Properties of Al86Ni8Y6 and Al86Ni6Y4.5Co2La1.5 Spark Plasma-Sintered Bulk Amorphous Composites,” Metall. Mater. Trans. A, vol. 51, pp. 5110–5119, 2020, doi: 10.1007/s11661-020-05916-9.
- [26] H. Kasturi, T. Paul, S. Biswas, S.H. Alavi, and S.P. Harimkar, “Sliding Wear Behavior of Spark-Plasma-Sintered Fe-Based Amorphous Alloy Coatings on Cu-Ni Alloy,” J. Mater. Eng. Perform., vol. 27, pp. 3629–3635, 2018, doi: 10.1007/s11665-018-3470-z.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33d65d93-a205-40a0-92c4-4241dc7e0468