PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dual hesitant Pythagorean fuzzy Bonferroni mean operators in multi-attribute decision making

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we investigate the multiple attribute decision making problems based on the Bonferroni mean operators with dual Pythagorean hesitant fuzzy information. Firstly, we introduce the concept and basic operations of the dual hesitant Pythagorean fuzzy sets, which is a new extension of Pythagorean fuzzy sets. Then, motivated by the idea of Bonferroni mean operators, we have developed some Bonferroni mean aggregation operators for aggregating dual hesitant Pythagorean fuzzy information. The prominent characteristic of these proposed operators are studied. Then, we have utilized these operators to develop some approaches to solve the dual hesitant Pythagorean fuzzy multiple attribute decision making problems. Finally, a practical example for supplier selection in supply chain management is given to verify the developed approach and to demonstrate its practicality and effectiveness.
Rocznik
Strony
339--386
Opis fizyczny
Bibliogr. 73 poz., tab., wzory
Twórcy
autor
  • School of Business, Sichuan Normal University, Chengdu, 610101, P.R. China
autor
  • School of Business, Sichuan Normal University, Chengdu, 610101, P.R. China
Bibliografia
  • [1] K. T. Atanassov: Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87–96.
  • [2] L. A. Zadeh: Fuzzy Sets, Information and Control, 8 (1965), 338–356.
  • [3] Z. S. Xu: Intuitionistic fuzzy aggregation operators, Ieee Transactions on Fuzzy Systems, 15 (2007), 1179–1187.
  • [4] Z. S. Xu, and R. R. Yager: Some geometric aggregation operators based on intuitionistic fuzzy sets, International Journal of General Systems, 35 (2006), 417–433.
  • [5] Z. X. Li, H. Gao, and G. W. Wei: Methods for Multiple Attribute Group Decision Making Based on Intuitionistic Fuzzy Dombi Hamy Mean Operators, Symmetry-Basel, 10 (2018), 574.
  • [6] Z. S. Xu, and R. R. Yager: Intuitionistic Fuzzy Bonferroni Means, Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics, 41 (2011), 568–578.
  • [7] Z. X. Su, G. P. Xia, M. Y. Chen, and L. Wang: Induced generalized intuitionistic fuzzy OWA operator for multi-attribute group decision making, Expert Systems with Applications, 39 (2012), 1902–1910.
  • [8] M. Agarwal, M. Hanmandlu, and K. K. Biswas: A Probabilistic and Decision Attitude Aggregation Operator for Intuitionistic Fuzzy Environment, International Journal of Intelligent Systems, 28 (2013), 806–839.
  • [9] R. R. Yager, and A. M. Abbasov: Pythagorean Membership Grades, Complex Numbers, and Decision Making, International Journal of Intelligent Systems, 28 (2013), 436–452.
  • [10] R. R. Yager: Pythagorean Membership Grades in Multicriteria Decision Making, Ieee Transactions on Fuzzy Systems, 22 (2014), 958–965.
  • [11] X. L. Zhang, and Z.S. Xu: Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets, International Journal of Intelligent Systems, 29 (2014), 1061–1078.
  • [12] H. Garg: A Novel Correlation Coefficients between Pythagorean Fuzzy Sets and Its Applications to Decision-Making Processes, International Journal of Intelligent Systems, 31 (2016), 1234–1252.
  • [13] Z. M. Ma, and Z. S. Xu: Symmetric Pythagorean Fuzzy Weighted Geometric/Averaging Operators and Their Application in Multicriteria Decision-Making Problems, International Journal of Intelligent Systems, 31 (2016), 1198–1219.
  • [14] X. D. Peng, and Y. Yang: Pythagorean Fuzzy Choquet Integral Based MABAC Method for Multiple Attribute Group Decision Making, International Journal of Intelligent Systems, 31 (2016), 989–1020.
  • [15] P. J. Ren, Z. S. Xu, and X. J. Gou: Pythagorean fuzzy TODIM approach to multi-criteria decision making, Applied Soft Computing, 42 (2016), 246–259.
  • [16] L. Gomes, and L. A. D. Rangel: An application of the TODIM method to the multicriteria rental evaluation of residential properties, European Journal of Operational Research, 193 (2009), 204–211.
  • [17] L. Gomes, L. A. D. Rangel, and F. J. Maranhao: Multicriteria analysis of natural gas destination in Brazil: An application of the TODIM method, Mathematical and Computer Modelling, 50 (2009), 92–100.
  • [18] Y. H. Huang, and G. W. Wei: TODIM method for Pythagorean 2-tuple linguistic multiple attribute decision making, Journal of Intelligent & Fuzzy Systems, 35 (2018), 901-915.
  • [19] J. Wang, G. W. Wei, and M. Lu: TODIM Method for Multiple Attribute Group Decision Making under 2-Tuple Linguistic Neutrosophic Environment, Symmetry-Basel, 10 (2018), 486.
  • [20] G. W. Wei: TODIM Method for Picture Fuzzy Multiple Attribute Decision Making, Informatica, 29 (2018), 555–566.
  • [21] X. L. Zhang: Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods, Information Sciences, 330 (2016) 104–124.
  • [22] D. C. Liang, Z. S. Xu, and A. P. Darko: Projection Model for Fusing the Information of Pythagorean Fuzzy Multicriteria Group Decision Making Based on Geometric Bonferroni Mean, International Journal of Intelligent Systems, 32 (2017), 966–987.
  • [23] G. W. Wei: Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making, Journal of Intelligent & Fuzzy Systems, 33 (2017), 2119–2132.
  • [24] E. Bolturk: Pythagorean fuzzy CODAS and its application to supplier selection in a manufacturing firm, Journal of Enterprise Information Management, 31 (2018), 550–564.
  • [25] Z. X. Li, G. W. Wei, and M. Lu: Pythagorean Fuzzy Hamy Mean Operators in Multiple Attribute Group Decision Making and Their Application to Supplier Selection, Symmetry-Basel, 10 (2018).
  • [26] X. M. Deng, J. Wang, G. W. Wei, and M. Lu: Models for Multiple Attribute Decision Making with Some 2-Tuple Linguistic Pythagorean Fuzzy Hamy Mean Operators, Mathematics, 6 (2018).
  • [27] Z. X. Li, G. W. Wei, and H. Gao: Methods for Multiple Attribute Decision Making with Interval-Valued Pythagorean Fuzzy Information, Mathematics, 6 (2018), 228.
  • [28] L. P. Wu, G. W. Wei, H. Gao, and Y. Wei: Some Interval-Valued Intuitionistic Fuzzy Dombi Hamy Mean Operators and Their Application for Evaluating the Elderly Tourism Service Quality in Tourism Destination, Mathematics, 6 (2018), 294.
  • [29] G. W. Wei, and M. Lu: Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in Multiple Attribute Decision Making, International Journal of Intelligent Systems, 33 (2018), 1043–1070.
  • [30] G. W. Wei, and M. Lu: Pythagorean fuzzy power aggregation operators in multiple attribute decision making, International Journal of Intelligent Systems, 33 (2018), 169–186.
  • [31] H. Gao, M. Lu, G. W. Wei, and Y. Wei: Some Novel Pythagorean Fuzzy Interaction Aggregation Operators in Multiple Attribute Decision Making, Fundamenta Informaticae, 159 (2018), 385–428.
  • [32] G. W. Wei: Picture Fuzzy Hamacher Aggregation Operators and their Application to Multiple Attribute Decision Making, Fundamenta Informaticae, 157 (2018), 271–320.
  • [33] G. W. Wei, M. Lu, X. Y. Tang,Y. Wei: Pythagorean hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making, International Journal of Intelligent Systems, 33 (2018), 1197–1233.
  • [34] G. W. Wei, and Y. Wei: Similarity measures of Pythagorean fuzzy sets based on the cosine function and their applications, International Journal of Intelligent Systems, 33 (2018), 634–652.
  • [35] G. W. Wei: Pythagorean Fuzzy Hamacher Power Aggregation Operators in MultipleAttribute Decision Making, Fundamenta Informaticae, 166 (2019), 57–85.
  • [36] R. X. Nie, Z. P. Tian, J. Q. Wang, and J. H. Hu: Pythagorean fuzzy multiple criteria decision analysis based on Shapley fuzzy measures and partitioned normalized weighted Bonferroni mean operator, International Journal of Intelligent Systems, 34 (2019), 297–324.
  • [37] X. D. Peng: Algorithm for Pythagorean Fuzzy Multi-criteria Decision Making Based on WDBA with New Score Function, Fundamenta Informaticae, 165 (2019), 99–137.
  • [38] J. Wang, G. W. Wei, and M. Lu: An Extended VIKOR Method for Multiple Criteria Group Decision Making with Triangular Fuzzy Neutrosophic Numbers, Symmetry-Basel, 10 (2018).
  • [39] D. C. Liang, Y. R. J. Zhang, Z. S. Xu, and A. Jamaldeen: Pythagorean fuzzy VIKOR approaches based on TODIM for evaluating internet banking website quality of Ghanaian banking industry, Applied Soft Computing, 78 (2019), 583–594.
  • [40] F. Khan, M. S. A. Khan, M. Shahzad, and S. Abdullah: Pythagorean cubic fuzzy aggregation operators and their application to multi-criteria decision making problems, Journal of Intelligent & Fuzzy Systems, 36 (2019), 595–607.
  • [41] G. W. Wei, and M. Lu: Dual hesitant pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making, Archives of Control Sciences, 27 (2017), 365–395.
  • [42] G. Beliakov, and S. James: Ieee, Averaging Aggregation Functions for Preferences Expressed as Pythagorean Membership Grades and Fuzzy Orthopairs, in: 2014 Ieee International Conference on Fuzzy Systems, 2014, 298–305.
  • [43] D. C. Liang, and Z. S. Xu: The newextension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets, Applied Soft Computing, 60 (2017), 167–179.
  • [44] E. Ilbahar, A. Karasan, S. Cebi, and C. Kahraman: A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system, Safety Science, 103 (2018), 124–136.
  • [45] J. Wang, G. W. Wei, and H. Gao: Approaches to Multiple Attribute Decision Making with Interval-Valued 2-Tuple Linguistic Pythagorean Fuzzy Information, Mathematics, 6 (2018).
  • [46] G. Wei: Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making (vol 33, pg 2119, 2017), Journal of Intelligent & Fuzzy Systems, 34 (2018), 2817–2824.
  • [47] G. W. Wei, and H. Garg, H. Gao, and C. Wei: Interval-Valued Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in MultipleAttribute Decision Making, Ieee Access, 6 (2018), 67866–67884.
  • [48] C. Bonferroni: Sulle medie multiple di potenze, Bolletino Matematica Italiana, 5 (1950), 267–270.
  • [49] B. Zhu, Z.S. Xu, and M. M. Xia: Hesitant fuzzy geometric Bonferroni means, Information Sciences, 205 (2012), 72–85.
  • [50] Y. D. He, Z. He, and H. Y. Chen: Intuitionistic Fuzzy Interaction Bonferroni Means and Its Application to Multiple Attribute Decision Making, Ieee Transactions on Cybernetics, 45 (2015), 116–128.
  • [51] Z. M. Liu, and P. D. Liu: Normal intuitionistic fuzzy Bonferroni mean operators and their applications to multiple attribute group decision making, Journal of Intelligent & Fuzzy Systems, 29 (2015), 2205–2216.
  • [52] G. W. Wei: Picture 2-Tuple Linguistic Bonferroni Mean Operators and Their Application to Multiple Attribute Decision Making, International Journal of Fuzzy Systems, 19 (2017), 997–1010.
  • [53] G. W. Wei: Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making, Kybernetes, 46 (2017), 1777–1800.
  • [54] P. Liu: Two-dimensional uncertain linguistic generalized normalized weighted geometric Bonferroni mean and its application to multiple-attribute decision making, Scientia Iranica, 25 (2018), 450–465.
  • [55] D. Pamucar, D. Bozanic, V. Lukovac, and N. Komazec: Normalized weighted geometric bonferroni mean operator of interval rough numbers – application in interval rough dematel-copras model, Facta Universitatis-Series Mechanical Engineering, 16 (2018), 171–191.
  • [56] X. M. Deng, G. W. Wei, H.Gao, and J.Wang: Models for Safety Assessment of Construction Project With Some 2-Tuple Linguistic Pythagorean Fuzzy Bonferroni Mean Operators, Ieee Access, 6 (2018), 52105–52137.
  • [57] X. Y. Tang, and G. W. Wei: Models for Green Supplier Selection in Green Supply Chain Management With Pythagorean 2-Tuple Linguistic Information, Ieee Access, 6 (2018), 18042–18060.
  • [58] J. Wang, G. W. Wei, and Y. Wei: Models for Green Supplier Selection with Some 2-Tuple LinguisticNeutrosophicNumber Bonferroni Mean Operators, Symmetry-Basel, 10 (2018), 131.
  • [59] X. Y. Tang, G. W. Wei, and H. Gao: Models for Multiple Attribute Decision Making with Interval-Valued Pythagorean Fuzzy Muirhead Mean Operators and Their Application to Green Suppliers Selection, Informatica, 30 (2019), 153–186.
  • [60] B. Zhu, Z. S. Xu, and M. M. Xia: Dual Hesitant Fuzzy Sets, Journal of Applied Mathematics, 2012 (2012), Article ID 879629, 879613 pages.
  • [61] R. T. Zhang, J. Wang, X. M. Zhu, M. M. Xia, and M. Yu: Some Generalized Pythagorean Fuzzy Bonferroni Mean Aggregation Operators with Their Application to Multiattribute Group Decision-Making, Complexity, 2017 (2017).
  • [62] Y. Wei, Q. Yu, J. Liu, and Y. Cao: Hot money and China’s stock market volatility: Further evidence using the GARCH-MIDAS model, Physica A: Statistical Mechanics and its Applications, 492 (2018), 923–930.
  • [63] Y. Wei, S. Qin, X. Li, S. Zhu, and G. Wei: Oil price fluctuation, stock market and macroeconomic fundamentals: Evidence from China before and after the financial crisis, Finance Research Letters, 30 (2019), 23–29.
  • [64] L. Gigovic, D. Pamucar, D. Bozanic, and S. Ljubojevic: Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia, Renewable Energy, 103 (2017), 501–521.
  • [65] X. D. Peng, and J. G.Dai: Hesitant fuzzy soft decision making methods based on WASPAS, MABAC and COPRAS with combined weights, Journal of Intelligent & Fuzzy Systems, 33 (2017), 1313–1325.
  • [66] S. Vesković, Ž. Stević, G. Stojić, and M. Vasiljević: Evaluation of the railway management model by using a new integrated model DELPHI-SWARA-MABAC, Decision Making. Applications in anagement and Engineering, 1 (2018), 34–50.
  • [67] M. Tang, J. Wang, J. P. Lu, G. W. Wei, C. Wei, and Y. Wei: Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making, Mathematics, 7 (2019), 344.
  • [68] P. Wang, J. Wang, G. W. Wei, and C. Wei: Similarity measures of qrung orthopair fuzzy sets based on cosine function and their applications, Mathematics, 7 (2019), 340.
  • [69] R. Wang, J. Wang, H. Gao, and G. W. Wei: Methods for MADM with Picture Fuzzy Muirhead Mean Operators and Their Application for Evaluating the Financial Investment Risk, Symmetry-Basel, 11 (2019), 6.
  • [70] G.W . Wei, Z. P. Zhang: Some single-valued neutrosophic Bonferroni power aggregation operators in multiple attribute decision making, Journal of Ambient Intelligence and Humanized Computing, 10 (2019), 863–882.
  • [71] S. Q. Zhang, H. Gao, G. W. Wei, Y. Wei, and C. Wei: Evaluation based on distance from average solution method for multiple criteria group decision making under picture 2-tuple linguistic environment, Mathematics, 7 (2019), 243.
  • [72] M. Keshavarz Ghorabaee, M. Amiri, E. K. Zavadskas, Z. Turskis, and J. Antucheviciene: Stochastic EDAS method for multi-criteria decision-making with normally distributed data, Journal of Intelligent & Fuzzy Systems, 33 (2017), 1627–1638.
  • [73] M. Keshavarz Ghorabaee, M. Amiri, E. K. Zavadskas, Z. Turskis, and J. Antucheviciene: A comparative analysis of the rank reversal phenomenon in the EDAS and TOPSIS methods, Economic Computation and Economic Cybernetics Studies and Research, 52 (2018), 121–134.
Uwagi
EN
1. This publication arises from research funded by the National Natural Science Foundation of China under Grant No. 61174149 and 71571128 and the Humanities and Social Sciences Foundation of Ministry of Education of the People’s Republic of China (No. 15XJA630006).
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33cedf5e-f1fc-4b0c-8c6e-7ff564bafb5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.