PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Tests of Shear Strength of Adhesive Lap Joints after Thermal Shocks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the results of comparative tests for the determination of Young’s modulus and the static shear strength of adhesive lap joints, based on grade 316L steel. The tests also concerned the determination of the glass transition temperature of a certain adhesive composition: Epidian 57 epoxy resin with a 10% Z1 hardener content. The paper shows the test results for the surface free energy and selected surface roughness parameters, including photographs of the test specimens after destructive testing. The tests were comparative and performed on adhesive joints, with and without exposure to thermal cycling. The scope of the testing included a relatively short thermal cycling run of 500 cycles with a temperature variation of -40°C to +60°C. An analysis was carried out of the results from testing the static shear resistance of specimens manufactured using various methods of adhesive joint seasoning. The experimental test results were statistically processed in compliance with good research practice.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering, 36 Nadbystrzycka Street, 20-618 Lublin
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Nowowiejska 24, 00-665 Warsaw
  • Air Force Institute of Technology, Księcia Bolesława 6, 01-494 Warsaw
Bibliografia
  • 1. Godzimirski J. Problemy klejenia konstrukcyjnego. Technologia i Automatyzacja Montażu. 2009; 1: 25–31.
  • 2. Kłonica M., Kuczmaszewski J., Samborski S. Effect of a Notch on Impact Resistance of the Epidian 57/Z1 Epoxy Material after “Thermal Shock”. Solid State Phenom. 2016; 240: 161–167. https://doi:10.4028/www.scientific.net/SSP.240.161.
  • 3. Kuczmaszewski J. Fundamentals of metal-metal adhesive joint design. Politechnika Lubelska, Oddział PAN w Lublinie, Lublin; 2006.
  • 4. Mogilski M., Jabłoński M., Deroszewska M., Saraczyn R., Tracz J., Kowalik M., Rządkowski W. Investigation of Energy Absorbed by Composite Panels with Honeycomb Aluminum Alloy Core. Materials. 2020; 13: 5807. https://doi.org/10.3390/ma13245807.
  • 5. Kłonica M. Impact of Thermal Fatigue on Young’s Modulus of Epoxy Adhesives. Advances in Science and Technology Research Journal. 2015; 9: 103–106. https://10.12913/22998624/60795.
  • 6. Kubit A., Trzepiecinski T., Kłonica M., Hebda M., Pytel M. The influence of temperature gradient thermal shock cycles on the interlaminar shear strength of fibre metal laminate composite determined by the short beam test. Compos B Eng. 2019; 176: 107217. https://doi.org/10.1016/j.compositesb.2019.107217.
  • 7. Surowska B., Dadej K., Jakubczak P., Bieniaś J. Short-beam shear fatigue life assessment of thermally cycled carbon–aluminium laminates with protective glass interlayers. Archives of Civil and Mechanical Engineering. 2021; 21(2): 1–11. https://doi.org/10.1007/s43452-021-00181-y.
  • 8. Skoczylas J., Samborski S., Kłonica M. A Multilateral Study on the FRP Composite’s Matrix Strength and Damage Growth Resistance. Compos. Struct. 2021; 263: 113752. https://doi.org/10.1016/j.compstruct.2021.113752.
  • 9. Humfeld G.R.J. Mechanical behavior of adhesive joints subjected to thermal cycling. Virginia Polytechnic Institute, Blacksburg, Virginia; 1997.
  • 10. Bielawski R., Rządkowski W., Kowalik M.P., Kłonica M. Safety of Aircraft Structures in the Context of Composite Element Connection. Int Rev Aerospace Eng (IREASE). 2020; 13(5): 159–164. https://doi.org/10.15866/irease.v13i5.18805.
  • 11. Rządkowski W., Tracz J., Cisowski A., Gardyjas K., Groen H., Palka M., Kowalik M. Evaluation of Bonding Gap Control Methods for an Epoxy Adhesive Joint of Carbon Fiber Tubes and Aluminum Alloy Inserts. Materials. 2021; 14 1977. https://doi.org/10.3390/ma14081977.
  • 12. Sadowski T., Balawender T., Śliwa R., Golewski P., Kneć M. Modern hybrid joints in aerospace: modeling and testing. Archives of Metallurgy and Materials. 2013; 58(1), 163–169. https://doi.org/10.2478/v10172-012-0168-3.
  • 13. Sawa M., Szala M., Henzler W. Innovative device for tensile strength testing of welded joints: 3d modelling, FEM simulation and experimental validation of test rig – a case study. Appl Comput Sci. 2021; 17: 92–105. https://doi.org/10.23743/acs-2021-24.
  • 14. Kowal M., Szala M. Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components. Eng Fail Anal. 2020; 110: 104447. https://doi.org/10.1016/j.engfailanal.2020.104447.
  • 15. Humienny Z. Specyfikacje Geometrii Wyrobów (GPS) – Wykład dla Uczelni Technicznych. Oficyna wydawnicza PW; 2001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33c7f6ee-8eb5-484f-adb7-527c48dbb469
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.