Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A series of steps taken to determine a kinetic equation that describes hydrogenation of propene on nickel catalyst is presented in this study. Mixed factorial design approach, belongs to designing of experiments methods was used to plane experiments. The investigations showed that the method applied makes possible determination of the kinetic equation in a relatively fast and cheap manner since only a few measurement points is required. The equation obtained was verified experimentally and statistically. Both tests showed satisfactory precision of anticipated values of the process rate.
Czasopismo
Rocznik
Tom
Strony
35--–41
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Rzeszów University of Technology, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
autor
- Rzeszów University of Technology, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
- Rzeszów University of Technology, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Bibliografia
- 1. Aaserud C., Hilmen A.-M., Bergene E.S.E., Schanke D., Holmena A., 2004. Hydrogenation of propene on cobalt Fischer–Tropsch catalysts. Catal. Lett., 94, 171–176. DOI: 10.1023/B:CATL.0000020541.28174.c7.
- 2. Ahmadigoltapeh, S., Mehranbod, N., Halimejani, H.Z., 2015. Propylene hydrogenation through structured and conventional catalyst beds: Experiment and modelling. J. Nat. Gas Sci. Eng., 27, 822–830. DOI: 10.1016/j.jngse.2015.09.030.
- 3. Brandao L., Fritsch D., Madeira LM., Mendes A.M., 2004. Kinetics of propylene hydrogenation on nanostructured palladium clusters. Chem. Eng. J., 103, 89–97. DOI: 10.1016/j.cej.2004.07.008.
- 4. Carturan G., Enzo S., Ganzerla R., Lenarda M., Zanoni R., 1990. Role of solid-state structure in propene hydrogenation with nickel catalysts. J. Chem. Soc. Faraday Trans., 86, 739–746. DOI: 10.1039/ft9908600739.
- 5. Esfe M.H.,. Rsotamian H, Shabani-Samghabadi A., Arani A.A.A., 2017. Application of three-level general factorial design approach for thermal conductivity of MgO/ water nanofluids. Appl. Therm. Eng., 127, 1194–1199. DOI: 10.1016/j.applthermaleng.2017.07.211.
- 6. Montgomery D.C., 2017. Design and analysis of experiments. 9th ed., Wiley.
- 7. Ozbay N., Yargıc A.Ş., Yarbay-Şahin R.Z., Onal E., 2013. Full factorial experimental design analysis of reactive dye removal by carbon adsorption. J. Chem., 234904. DOI: 10.1155/2013/234904.
- 8. Pachulski A., Schodel R., Claus P., 2012. Kinetics and reactor modeling of a Pd-Ag/Al2O3 catalyst during selective hydrogenation of ethyne. Appl. Catal., A, 445–446, 107–120. DOI: 10.1016/j.apcata.2012.08.018.
- 9. Schweitzer NM., Hu B., Das U., Hacksung K., Greeley J., Curtiss L.A., Stair P.C., Miller J.T., Hock A.S., 2014. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal., 4, 1091–1098. DOI: 10.1021/cs401116p.
- 10. Sen G.A., 2016. Application of full factorial experimental design and response surface methodology for chromite beneficiation by Knelson concentrator. Minerals, 6, 5. DOI: 10.3390/min6010005.
- 11. Szukiewicz M., Chmiel-Szukiewicz E., Kaczmarski K., Szałek A., 2019. Dead zone for hydrogenation of propylene reaction carried out on commercial catalyst pellets. Open Chem., 17, 295–301. DOI: 10.1515/chem-2019-0037.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33c5f45b-8c1b-4169-bda2-e578bf419c6c