PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Different Fiber Sizes in PLA/Carbon Fiber Composites on Mechanical Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study assessed the morphology and chemical composition of coir coconut husk carbon fiber, as well as the impact of fiber diameters on the physical and mechanical properties of polylactic acid composites. Researchers are studying polylactide acid, a biodegradable material. This eco-friendly material’s excellent features, generated from sustainable and renewable sources, have drawn many people. Malaysia’s high coconut fiber output made coir husk a popular commodity. Coconut fibers are lignin, cellulose, and hemicellulose. Alkaline treatment eliminates hemicellulose, oil, wax, and other contaminants from coir fibers and removes lignin. Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy were used to examine the treated coconut fibers’ chemical modification analysis and morphology. Coconut coir husk was carbonized to produce carbon fiber using a furnace operated at 300°C for 2 hours. Fiber and polylactic acid were mixed in different fiber sizes (0,53 μm, 75 μm, and 212 μm) via extrusion and injection processing techniques. The results showed that the alkali treatment reduced the hydroxyl (-OH) group and separated the area from the carbonyl (C=O) group of coconut coir husk, which changed the filler’s hydrophilicity. The fiber size of 212 μm was discovered to have the highest tensile and flexural strength values. According to testing, the modified material structure had a better surface fill-matrix bond. Thus, generalized fiber sizing and characterization methods were developed. Regardless of the matrix, this method can characterize natural fiber strength and interfacial shear strength of varied diameters and solid contents.
Twórcy
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000, Perlis, Malaysia
  • Universiti Malaysia Perlis, (UniMAP), Faculty of Mechanical Engineering and Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000, Perlis, Malaysia
  • Universiti Malaysia Perlis, (UniMAP), Faculty of Chemical Engineering and Technology, 02600 Jalan Kangar-Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000, Perlis, Malaysia
  • Universiti Malaysia Perlis, (UniMAP), Faculty of Chemical Engineering and Technology, 02600 Jalan Kangar-Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000, Perlis, Malaysia
  • Universiti Malaysia Perlis, (UniMAP), Faculty of Mechanical Engineering and Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000, Perlis, Malaysia
  • Universiti Malaysia Perlis, (UniMAP), Faculty of Chemical Engineering and Technology, 02600 Jalan Kangar-Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000, Perlis, Malaysia
  • Universiti Malaysia Terengganu, Faculty of Ocean Engineering Technology and Informatic, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000, Perlis, Malaysia
  • Universiti Malaysia Perlis, (UniMAP), Faculty of Chemical Engineering and Technology, 02600 Jalan Kangar-Arau, Perlis, Malaysia
  • Sriwijaya University, Faculty of Engineering, Civil Engineering Department, Indonesia
  • Universiti Malaysia Perlis, (UniMAP), Faculty of Mechanical Engineering and Technology, Perlis, Malaysia
  • Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 42-201 Częstochowa, Poland
Bibliografia
  • [1] S.A.N. Mohamed, E.S. Zainudin, S.M. Sapuan, M.D. Azaman, A.M.T. Arifin, Introduction to natural fiber reinforced vinyl ester and vinyl polymer composites. Nat. Fiber Reinf. Vinyl Ester Vinyl Polym. Compos. 1-25 (2018).
  • [2] A. Bengtsson, J. Bengtsson, M. Sedin, E. Sjöholm, Carbon fibers from lignin-cellulose precursors: effect of stabilization conditions. Acs. Sustain Chem. Eng. 7 (9), 8440-8448 (2019).
  • [3] K.F. Hasan, P.G. Horváth, M. Bak, T. Alpár, A state-of-the-art. Review on coir fibre-reinforced biocomposites. Rsc. Advances 11 (18), 10548-10571 (2021).
  • [4] S. Farah, D.G. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv. Drug Deliver Rev. 107, 367-392 (2016).
  • [5] R. Siakeng, M. Jawaid, H. Ariffin, S.M. Sapuan, M. Asim, N. Saba, Natural fiber reinforced polylactic acid composites: A review. Polym. Compos. 40 (2), 446-463 (2019).
  • [6] I.N. Nasidi, L.H. Ismail, E.M. Samsudin, Effect of Sodium Hydroxide (NaOH) Treatment on Coconut Coir Fibre and its Effectiveness on Enhancing Sound Absorption Properties. Pertanika J. Sci. Technol. 29 (1), (2021).
  • [7] A.H. Muhammad, Effect of alkali treatment on the coconut fiber surface. ARPN J. Eng. Appl. Sci. 12 (6), 1870-1875 (2017).
  • [8] A. Pérez-Fonseca, H. Teymoorzadeh, J. Robledo-Ortíz, R. González-Nuñez, D. Rodrigue, Polylactic acid composites and composite foams based on natural fibers. Handbook of Composites from Renewable Materials, Structure and Chemistry 1, 25 (2016).
  • [9] N.A.A. Hassan, S. Ahmad, R.S. Chen, Density Measurement, Tensile and Morphology Properties of Polylactic Acid Biocomposites Foam Reinforced with Different Kenaf Filler Loading. Sains Malays 49, 2293-2300 (2020).
  • [10] G. Rajeshkumar, S.A. Seshadri, G.L. Devnani, M.R. Sanjay, S. Siengchin, J.P. Maran, A.R. Anuf. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites - A comprehensive review. J. Cleaner Prod. 310, 127483 (2021).
  • [11] A. Rigail-Cedeño, M. Lazo, J. Gaona, J. Delgado, C.V. Tapia-Bastidas, A.L. Rivas, R. Perugachi, Processability and Physical Properties of Compatibilized Recycled HDPE/Rice Husk Biocomposites. J. Manuf. Mater. Process. 6 (4), 67 (2022).
  • [12] L.A. Chicos, M.A. Pop, A.M. Zaharia, C. Lancea, G.R. Buican, I.S. Pascariu, V.M. Stamate, infill density influence on mechanical and thermal properties of short carbon fiber-reinforced polyamide composites manufactured by FFF process. Mater. 15 (10), 3706 (2022).
  • [13] E. Kargar, A. Ghasemi-Ghalebahman, Experimental investigation on fatigue life and tensile strength of carbon fiber-reinforced PLA composites based on fused deposition modeling. Sci. Rep. 13 (1), 18194 (2023).
  • [14] K.R. Kumar, V. Mohanavel, K. Kiran, Mechanical properties and characterization of polylactic acid/carbon fiber composite fabricated by fused deposition modeling. J. Mater. Eng. Perform. 31 (6), 4877-4886 (2022).
  • [15] K. Roy, S.C. Debnath, A. Pongwisuthiruchte, P. Potiyaraj, Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives. J. Appl. Polym. Sci. 138 (35), 50866 (2021).
  • [16] A. Alawar, A.M. Hamed, K. Al-Kaabi, Characterization of treated date palm tree fiber as composite reinforcement. Composites, Part B. 40 (7), 601-606 (2009).
  • [17] Q. Wang, T. Chen, X. Wang, Y. Zheng, J. Zheng, G. Song, S. Liu, Recent Progress on Moisture Absorption Aging of Plant Fiber Reinforced Polymer Composites. Polym., 15 (20), 4121 (2023).
  • [18] N.F. Zaaba, H. Ismail, The effect of filler loading on tensile and morphological properties of polylactic acid (PLA)/thermoplastic corn starch (TPCS)/peanut shell powder (PSP) biocomposites. AIP Conf. Proc. 2068 (1) (2019).
  • [19] R.S. Chen, S. Ahmad, M.H.A. Ghani, M.N. Salleh, Optimization of high filler loading on tensile properties of recycled HDPE/PET blends filled with rice husk. AIP Conf. Proc. 1614 (1), 46-51 (2014).
  • [20] R.C. Neagu, M. Cuénoud, F. Berthold, P.E. Bourban, E.K. Gamstedt, M. Lindström, J.A.E. Månson, Processing and mechanical properties of novel wood fibre composites foams. Int. Conf. Compos. Mater. (2009).
  • [21] I. Chiulan, A.N. Frone, C. Brandabur, D.M. Panaitescu, Recent advances in 3D printing of aliphatic polyesters. Bioeng. 5 (1), 2 (2017).
  • [22] N. Van de Werken, H. Tekinalp, P. Khanbolouki, S. Ozcan, A. Williams, M. Tehrani, Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Addit. Manuf. 31, 100962 (2020).
  • [23] A. Ramachandran, S. Mavinkere Rangappa, V. Kushvaha, A. Khan, S. Seingchin, H.N. Dhakal, Modification of fibers and matrices in natural fiber reinforced polymer composites: A comprehensive review. Macromol. Rapid Commun. 43 (17), 2100862 (2022).
  • [24] C. Dispenza, M.A. Sabatino, G. Infurna, N.T. Dintcheva, Control of end‐of‐life oxygen‐containing groups accumulation in biopolyesters through introduction of crosslinked polysaccharide particles. Polym. Eng. Sci. 62 (2), 426-436 (2022).
  • [25] H. Bouafif, A. Koubaa, P. Perré, A. Cloutier, Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Composites Part A: Applied science and Manufacturing 40 (12), 1975-1981 (2009).
Uwagi
The authors would like to extend our appreciation to the Center of Excellence Geopolymer & Green Technology (CEGeoGTech), Faculty of Mechanical Engineering and Technology, Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), and their involvement in the research.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33c41e56-b31f-4319-bb1a-7f24ad2da665
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.