Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Because of new EU laws restricting the use of harmful substances (i.e. Pb because of the RoHS Directive), the search for new methods of joining has become highly urgent. The main problem for most solutions known to date has been to achieve good electrical parameters while maintaining low sintering temperaturatures. Pastes based on silver nanoparticles were developed, which allow to sinter below 300 ° C. Those layers have sheet resistance below 2 mΩ/sq. Low exposure to heat allows to use these pastes on elastic substrates such as paper or Kapton foil. In present work, the authors proved that it is possible to obtain joints on elastic substrates which can withstand over 30 000 cycles in bend test, with sintering in 300°C, by means of the Low Temperature Joining Technique (LTJT).
Rocznik
Tom
Strony
325--331
Opis fizyczny
Bibliogr. 22 poz., rys., wykr., tab.
Twórcy
autor
- Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Mechatronics, Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
autor
- Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
autor
- Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
autor
- Abraxas, ul. Piaskowa 27, 44-300 Wodzisław Śląski, Poland
autor
- Warsaw University of Technology, Faculty of Mechatronics, Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Mechatronics, Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
Bibliografia
- [1] R.A. Amro, “Packaging and interconnection technologies of power devices, challenges and future trends”, World Academy of Science, Engineering and Technology Vol. 49, 2009.
- [2] R. Kisiel and Z. Szczepański, “Die-attachment solutions for SiC power devices”, Microelectronics Reliability 49, 627‒629, 2009.
- [3] C. Goebl and J. Faltenbacher, “Low temperature sinter technology die attachment for power electronic applications”, CIPS 2010, (2010).
- [4] F. Le Henaff, S. Azzopardi, E. Woirgard, T. Youssef, S. Bontemps, and J. Joguet, “Lifetime evaluation of nanoscale silver sintered power modules for automotive application based on experiments and finite-element modeling”, IEEE Transactions on Device and Materials Reliability 15 (3), 326- 334, (2015).
- [5] J.S. Hwang, “Overview of lead-free solders for electronics & microelectronics”, Proc. SMI 94 Conf. , 405 (1994).
- [6] T. Zhou, T. Bobal, M. Oud, and J. S. Coining „Au/Sn solder alloy and its applications in electronics packaging”, http:// www.ametek‑ecp.com/~/media/ametek‑ecp/files/cwtechnicalpapers/coining_english_gold_tin_paper.pdf.
- [7] http://buyersguide.pennwell.com/Shared/User/cyad09bd57558b-4f6a899c35f475a7af10.pdf.
- [8] J. Szałapak, K. Kiełbasiński, J. Krzemiński, A. Młożniak, E. Zwierkowska, R. Pawłowski, and M. Jakubowska, “Method of calculating thermal diffusivity and conductivity for irregularly shaped specimens in laser flash analysis”, Metrol. Meas. Syst. XXII, No. 4, 521–530, 2015.
- [9] K. Kiełbasiński, J. Szałapak, M Jakubowska, A. Młożniak, E. Zwierkowska, J. Krzemiński, and M. Teodorczyk, “Influence of nanoparticles content in silver paste on mechanical and electrical properties of LTJT joints”, Advanced Powder Technology 26 (3), 907–913, 2015.
- [10] K.S. Siow, “Mechanical properties of nano-silver joints as die attach materials”, Journal of Alloys and Compounds 514, pp. 6‒19, 2012.
- [11] Z. Zhang and G.-Q. Lu, “Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow”, IEEE Transactions on Electronics Packaging Manufacturing 25 (4), 2002.
- [12] M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, and T. Komatsu, “Silver nanosintering: a lead-free alternative to soldering”, IEEE Transactions on Electronics Packaging Manufacturing, 25(4), 2002.
- [13] S. Sakamoto and K. Suganuma, “Low temperature die-bonding with Ag flakes”, EMPC 2011, (2011).
- [14] M. Knoerr and A. Schletz, “Power semiconductor joining through sintering of silver nanoparticles: Evaluation of influence of parameters time, temperature and pressure on density, strength and reliability”, CIPS 2010, Nuremberg, Germany, (2010).
- [15] S. Hausner, S. Weiss, B. Wielage, and G. Wagner, “Joining of copper at low temperatures using Ag nanoparticles: Influence of process parameters on mechanical strength”, International Brazing & Soldering Conference, Long Beach, (2015).
- [16] C. Buttay, A. Masson, J. Li, M. Johnson, M. Lazar, C. Raynaud, and H. Morel, “Die attach of power devices using silver sintering – bonding process optimisation and characterization”, HiTEN, (2011).
- [17] S. Fu, Y. Mei, X. Li, P. Ning, and G. Q. Lu, “Parametric study on pressureless sintering of nanosilver paste to bond large- area (>100 mm2) power chips at low temperatures for electronic packaging”, J. Electron. Mater. 44 (10), 3973–3984, 2015.
- [18] W. Schmitt, “New silver contact pastes from high pressure sintering to low pressure sintering,” 3rd Electronic System-Integrated Technology Conference (ESTC), Berlin, 2010.
- [19] M. Jakubowska, M. Jarosz, K. Kiełbasinski, and A. Młożniak, “New conductive thick-film paste based on silver nanopowder for high power and high temperature applications”, Microelectronics Reliability 51 (7), 1235‒1240, 2011.
- [20] http://silvercon.com.pl/en
- [21] S. Paknejad, G. Dumas, G. West, G. Lewis, and S. Mannan, “Microstructure evolution during 300°C storage of sintered Ag nanoparticles on Ag and Au substrates”, J. Alloy Compd. 617, 994–1001, 2014.
- [22] Y. Fang, R.W. Johnson, and M.C. Hamilton, “Pressureless sintering of microscale silver paste for 300 C applications,” IEEE Trans. Compon. Packag. Manuf. Technol. 5 (9), 1258–1264, (2015).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33bd3370-8e4b-4615-b25d-d5d7c6e2f07b