PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon Footprint Analysis of Cocoa Product Indonesia Using Life Cycle Assessment Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The production of cocoa beans in Indonesia into chocolate and other cocoa-derived products produces emissions that pollute the environment. This research aimed to calculate the carbon footprint of the cocoa agroindustry using the Life Cycle Assessment approach in Lampung, Indonesia. The LCA under study is within the scope of Cradle to Grave, starting from nurseries_cocoa plantations_dry cocoa beans_chocolate production_retail, and consumers with emission function units per 1 kg of product. The method refers to the ISO 14040:2006 life cycle assessment standard, with the stages of determining objectives and scope, inventory analysis, impact assessment, and interpretation of recommendations. Primary data was analyzed using Simapro 9.4.0.2 Software. Secondary data was collected through a literature study. Data analysis shows the highest environmental impact after normalization resulting from four activities: packaging, transportation from industry to marketing office, and transportation from marketing office to retail. The highest environmental impact is generated by industrial activities, with a total emission of 2.57E-10 per kg of dark chocolate. In this study, GWP 100a emissions from cocoa agroforestry and agroindustry activities within the scope of the Cradle to Grave study were 7.31E+01 kg CO2-eq per kg dark chocolate. In addition, selecting the type of packaging is an indicator that must be considered. Using a combination of aluminum foil, paper, and cardboard as packaging causes the second highest emission in the packaging sub-process after transportation from industry to marketing office in industrial activities. It is the 4th highest of all activities. One of the reasons for the high emissions produced in the final product or cocoa consumed by consumers is no longer in doubt. On the basis of normalization activities, the highest environmental impacts were generated by industrial activities, with a total emission of 2.57E-10. The use of packaging in packaging and fuel activities in transportation from industry to marketing office activities, industrial activities also use quite a large amount of electrical energy, namely 421.91 kWh. Recommendations for improvement can be identified to reduce the GHG impact and increase energy efficiency. Energy-saving sustainablemethods constitute a challenge for the cocoa agroindustry because they positively impact the reduction of the global warming potential.
Rocznik
Strony
187--197
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Agroindustrial Engineering Study Program of Graduate School, IPB University, Jl. Raya Dramaga Kampus IPB Dramaga Bogor, 16680, West Java, Indonesia
  • Department of Agricultural Industrial Technology, Faculty of Agricultural Engineering & Technology, IPB University, Raya Dramaga Street, Babakan, Dramaga, Bogor, 16680, Indonesia
  • Department of Agricultural Industrial Technology, Faculty of Agricultural Engineering & Technology, IPB University, Raya Dramaga Street, Babakan, Dramaga, Bogor, 16680, Indonesia
  • Department of Agricultural Industrial Technology, Faculty of Agricultural Engineering & Technology, IPB University, Raya Dramaga Street, Babakan, Dramaga, Bogor, 16680, Indonesia
  • Department of Agricultural Industrial Technology, Faculty of Agricultural Engineering & Technology, IPB University, Raya Dramaga Street, Babakan, Dramaga, Bogor, 16680, Indonesia
Bibliografia
  • 1. Afoakwa, E.O.2014. Cocoa Production and Processing Technology. Cocoa Production and Processing Technology. https://doi.org/10.1201/b16546
  • 2. Bantacut, T., Romli, M., Noor, E.2019. Life cycle assessment of cane-sugar in Indonesian sugar mill: energy use and GHG emissions. IOP Conference Series: Materials Science and Engineering, 536(1), 12059
  • 3. Beamon, B.M.1998. Supply chain design and analysis: Models and methods. International Journal of Production Economics, 55(3), 281–294.
  • 4. Beckett, S.T.2000. The Science of Chocolate. The Science of Chocolate.
  • 5. Bianchi, F. R., Moreschi, L., Gallo, M., Vesce, E., Del Borghi, A.2021a. Environmental analysis along the supply chain of dark, milk and white chocolate: a life cycle comparison. International Journal of Life Cycle Assessment, 26(4), 807–821. https://doi.org/10.1007/s11367-020-01817-6
  • 6. Burman, N.W., Croft, J., Engelbrecht, S., Ladenika, A.O., MacGregor, O.S., Maepa, M., Bodunrin, M. O., Harding, K.G.2018. Review: Life-cycle assessment, water footprinting, and carbon footprinting in Portugal. International Journal of Life Cycle Assessment, 23(8), 1693–1700.
  • 7. Büsser, S., Jungbluth, N.2009. LCA of Chocolate Packed in Aluminium Foil Based Packaging.Pages)
  • 8. Chopra, S., & Meindl, P. 2013. Supply Chain Management: Strategy, Planning, and Operation (Fifth Edit). Prentice Hall. https://doi.org/10.1017/CBO9781107415324.004
  • 9. CML - Department of Industrial Ecology. 2016. CML-IA Characterisation Factors. Universiteit Leiden.
  • 10. Costa, C., Wironen, M., Racette, K., & Wollenberg, E.K. 2021. Global Warming Potential*(GWP*): Understanding the implications for mitigating agricultural methane emissions.
  • 11. Cucurachi, S., Scherer, L., Guinée, J., Tukker, A. 2019. Life Cycle Assessment of Food Systems. One Earth, 1(3), 292–297. https://doi.org/https://doi.org/10.1016/j.oneear.2019.10.014
  • 12. Curran, M.A. 2017. Overview of goal and scope definition in life cycle assessment. In Goal and scope definition in life cycle assessment. Springer, 1–62.
  • 13. Desjardins, R.L., Worth, D.E., Dyer, J.A., Vergé, X.P.C., McConkey, B.G. 2020. The carbon footprints of agricultural products in Canada. Carbon Footprints. Springer, 1–34.
  • 14. Diyarma, I.,Bantacut, T. 2019. Assessment of the environmental impact of the gayo arabica coffee production by a wet process using life cycle assessment. Acta Universitatis Cibiniensis. Series E: Food Technology, 23(1), 27–34
  • 15. Edoh Adabe, K., Ngo-Samnick, L. 2014. Cocoa: Production and processing. CTA.
  • 16. Franchetti, M.J., Apul, D.2013. Carbon footprint analysis. International Journal of Climate Change Strategies and Management. CRC Press, 5(2). https://doi.org/10.1108/ijccsm.2013.41405baa.010
  • 17. Gao, T., Liu, Q., Wang, J. 2014. A comparative study of carbon footprint and assessment standards. International Journal of Low-Carbon Technologies, 9(3), 237–243.
  • 18. Hauschild, M.Z., Huijbregts, M.A.J. 2015. Introducing life cycle impact assessment. In Life cycle impact assessment. Springer, 1–16.
  • 19. ISO, S. 14040. 2016. SNI ISO 14040-2016, Manajemen lingkungan—Penilaian daur hidup—Prinsip dan kerangka kerja.b
  • 20. Klopffer, W., Grahl, B. 2014. Life Cycle Assessment (LCA) A Guide to Best Practice. Wiley-VCH. https://www.ptonline.com/articles/how-to-get-better-mfi-results
  • 21. Mert, G., Linke, B.S.,Aurich, J.C. 2017. Analyzing the Cumulative Energy Demand of Product-service Systems for Wind Turbines. Procedia CIRP, 214–219. https://doi.org/10.1016/j.procir.2016.09.018
  • 22. Meteyer, S., Xu, X., Perry, N., Zhao, Y.F. 2014. Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia Cirp, 15, 19–25.
  • 23. Mila, G., Primasari, B., Aziz, R. 2021. Application of Life Cycle Assessment (LCA) On Green Tea Product (Case Study in the X Company). IOP Conference Series: Materials Science and Engineering, 1041(1), 12025.
  • 24. Ngo, H.H., Guo, W., Surampalli, R.Y., Zhang, T.C. 2016. Green technologies for sustainable water management. Green Technologies for Sustainable Water Management. https://doi.org/10.1061/9780784414422
  • 25. Notarnicola, B., Tassielli, G., Renzulli, P. A., Lo Giudice, A. 2015. Life Cycle Assessment in the agrifood sector: an overview of its key aspects, international initiatives, certification, labelingschemes methodological issues. Life Cycle Assessment in the Agri-Food Sector, 1–56.
  • 26. Ntiamoah, A., Afrane, G. 2009. Life Cycle Assessment of Chocolate Produced in Ghana.
  • 27. Ortiz-R, O. O., Amanda, R., Gallardo, V., Rangel, J.M. 2014. Applying life cycle management of Colombian cocoa production, 34(1), 62–68.
  • 28. Pramulya, R., Bantacut, T., Noor, E., Yani, M., Romli, M. 2022. Life Cycle Assessment of Gayo Arabica Coffee Green Bean at Aceh Province. HABITAT, 33(3), 308–319.
  • 29. Purwanto, P.2021. Cleaner Production And Waste Minimization. Global Classroom Solid and Scheduled Waste Management; Faculty of Civil Engineering Technology; Universiti Malaysia Pahang, 1–47. https://doi.org/10.13140/RG.2.2.33609.16486
  • 30. Ramachandra, T.V., Mahapatra, D.M. 2015. The science of carbon footprint assessment. The Carbon Footprint Handbook, 3–44.
  • 31. Recanati, F., Marveggio, D., Dotelli, G. 2018. From beans to bar: A life cycle assessment towards sustainable chocolate supply chain. Science of the Total Environment, 613–614. https://doi.org/10.1016/j.scitotenv.2017.09.187
  • 32. Renzulli, P.A., Bacenetti, J., Benedetto, G., Fusi, A., Ioppolo, G., Niero, M., Proto, M., Salomone, R., Sica, D., & Supino, S. 2015. Life cycle assessment in the cereal and derived products sector. Life Cycle Assessment in the Agri-Food Sector, 185–249.
  • 33. Rudenko, N.V., Ershov, V.V., Evstafiev, V.V. 2017. The Environment-Friendly Power Source for Power Supply of Mobile Communication Base Stations. IOP Conference Series: Earth and Environmental Science, 012024. https://doi.org/10.1088/1755-1315/66/1/012024
  • 34. Sharaai, A.H., Zulkipli, L., Harun, A.H., Hui, A.Y. 2020. Social life cycle assessment (S-LCA) of cocoa production on local community and workers in Pahang, Malaysia. International Journal of Advanced Science and Technology, 29(9).
  • 35. Siregar, K., Tambunan, A.H., Irwanto, A.K., Wirawan, S.S., Araki, T. 2015. A comparison of life cycle assessment on oil palm (Elaeis guineensis Jacq.) and physic nut (Jatropha curcas Linn.) as feedstock for biodiesel production in Indonesia. Energy Procedia, 65, 170–179.
  • 36. Suprihatin; Nugroho, A.W.; Suparno, O.; Sarono.,2015. Life cycle assessment of integrated palm oil industry with scenarios of liquid and solid wastes utilization and integration with cattle farm. In Proceedings The 5th Environmental Technology and Management Conference “Green Technology towards Sustainable Environment”. Bandung, Indonesia 23–24 November.
  • 37. UNCTAD.2015. Cocoa industry : Integrating small farmers into the global value chain Cocoa industry : Integrating small farmers into the global value chain. Cocoa Industry: Integrating Small Farmers into the Global Value Chain, 7, 49.
  • 38. Weidema, B. P., Thrane, M., Christensen, P., Schmidt, J., Løkke, S.2008. Carbon footprint: a catalyst for life cycle assessment? Journal of Industrial Ecology, 12(1), 3–6.
  • 39. Wiloso, E.I., Nazir, N., Hanafi, J., Siregar, K., Harsono, S.S., Setiawan, A.A.R., Muryanto, Romli, M., Utama, N.A., Shantiko, B., Jupesta, J., Utomo, T.H.A., Sari, A.A., Saputra, S.Y., Fang, K.2019. Life cycle assessment research and application in Indonesia. International Journal of Life Cycle Assessment, 24(3), 386–396. https://doi.org/10.1007/s11367-018-1459-3
  • 40. Yusuf, M.A., Romli, M., Wiloso, E.I.2019. Carbon Footprint of Semi-Mechanical Sago Starch Production. Journal of Ecological Engineering, 20(11).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33bb6b75-7f27-4003-b674-0010fea47a96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.