PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A green binder for cold weather applications: enhancing mechanical performance of alkali-activated slag through modulus, alkali dosage, and Portland cement substitution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Below 5 °C, Portland cement (PC) experiences delayed hydration, slowing strength development, making it unsuitable for winter. Alkali-activated slag (AAS) emerges as a viable alternative with continuous hydration in low-temperature conditions. The effect of the activator nature on the performance of AAS cured at normal temperatures is well known, but further studies are required for low-temperature conditions. This study investigates the synergistic impact of activator modulus (1.2 and 1.5), alkali dosage (5, 7, and 9%), and PC substitution rates (0, 10, and 20%), on low-temperature cured AAS properties. Eighteen mixtures were prepared and cured at 2 °C. Compression and ultrasonic pulse velocity tests were conducted after 7, 28, and 90 days. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy analyses were performed to examine the microstructure of the samples. Elevating alkali dosage enhanced early age strength but resulted in a drop in 90-day strength. Simultaneous increases in modulus and PC substitution rate reduced strength due to shrinkage-induced crack formation. Optimal mixture design options included using 10% PC in the 1.2 modulus and omitting PC when the 1.5 modulus was selected. Despite low temperatures, the use of PC significantly accelerated the setting time. Altering modulus and alkali dosage caused a considerable change in the intensity of the peaks in the FTIR spectrum. The findings indicate that AAS shows promise when adjusting the mixture design for temperatures below 5 °C, which are unfavorable for the hydration of PC.
Rocznik
Strony
art. no. e176, 2024
Opis fizyczny
Bibliogr. 55 poz., rys., wykr.
Twórcy
autor
  • Civil Engineering Deparment, Bingöl University, 12000 Bingöl, Turkey
  • Civil Engineering Deparment, Bingöl University, 12000 Bingöl, Turkey
autor
  • Civil Engineering Deparment, Bingöl University, 12000 Bingöl, Turkey
Bibliografia
  • 1. Mei Y, Zhao L, Nong X, Yang T, Zhang X, Wang R, Wang X. Field test study on early strain development law of mass concretein cold weather. Case Stud Constr Mater. 2022. https://doi.org/10.1016/j.cscm.2022.e01455.
  • 2. Yu K, Jia M, Yang Y, Liu Y. A clean strategy of concrete curing incold climate: solar thermal energy storage based on phase changematerial. Appl Energy. 2023. https://doi.org/10.1016/j.apenergy.2022.120375.
  • 3. Zhang H, Ai J, Ren Q, Zhu X, He B, Jiang Z. Understanding the strength evolution of alkali-activated slag pastes cured at subzero temperature. Cem Concr Compos. 2023;138: 104993. https://doi.org/10.1016/j.cemconcomp.2023.104993.
  • 4. Alzaza A, Ohenoja K, Illikainen M. Enhancing the mechanical and durability properties of subzero-cured one-part alkali-acti-vated blast furnace slag mortar by using submicron metallurgical residue as an additive. Cem Concr Compos. 2021;122: 104128.https://doi.org/10.1016/j.cemconcomp.2021.104128.
  • 5. Ju C, Ye R, Wu Y, Sun P, Liu Y, Yang Y. Effect of alkali cation on performance of alkali-activated slag mortar in cold environments. Separations. 2022. https://doi.org/10.3390/separations9120450.
  • 6. Liu Y, Sun F, Yu K, Yang Y. Experimental and numerical research on development of synthetic heat storage form incorporating phase change materials to protect concrete in cold weather. Renew Energy. 2020. https://doi.org/10.1016/j.renene.2019.10.142.
  • 7. Demirboǧa R, Karagöl F, Polat R, Kaygusuz MA. The effects of urea on strength gaining of fresh concrete under the cold weather conditions. Constr Build Mater. 2014. https://doi.org/10.1016/j.conbuildmat.2014.04.008.
  • 8. Zhang G, Yang H, Ju C, Yang Y. Novel selection of environment-friendly cementitious materials for winter construction: Alkali-activated slag/Portland cement. J Clean Prod. 2020.https://doi.org/10.1016/j.jclepro.2020.120592.
  • 9. American Concrete Institute (ACI), ACI 306R-10, Am ConcrInst. 2016.
  • 10. Haque MA, Chen B. Research progresses on magnesium phos-phate cement: a review. Constr Build Mater. 2019. https://doi.org/10.1016/j.conbuildmat.2019.03.304.
  • 11. Liu J, Li Y, Yang Y, Cui Y. Effect of low temperature on hydration performance of the complex binder of silica fume-portland cement. J Wuhan Univ Technol Mater Sci Ed. 2014. https://doi.org/10.1007/s11595-014-0870-2.
  • 12. Miller SA, Horvath A, Monteiro PJM. Impacts of booming concrete production on water resources worldwide. Nat Sustain. 2018. https://doi.org/10.1038/s41893-017-0009-5.
  • 13. Dener M. Effect of Ferrochrome slag substitution on high temperature resistance and setting time of alkali-activated slag mortars. Iran J Sci Technol Trans Civ Eng. 2023. https://doi.org/10.1007/s40996-023-01087-w.
  • 14. Bodur B, Bayraktar OY, Benli A, Kaplan G, Tobbala DE, Tayeh B. Effect of using waste water from the ready-mixed concrete plant on the performance of one-part alkali-activated GBFS/FA composites: Fresh, mechanical and durability properties, J Build Eng. 2023;107167.
  • 15. Bayraktar OY, Yakupoglu U, Benli A. Slag/diatomite-basedalkali-activated lightweight composites containing waste andesite sand: mechanical, insulating, microstructural and durability properties. Arch Civ Mech Eng. 2023. https://doi.org/10.1007/s43452-023-00774-9.
  • 16. Karatas M, Dener M, Mohabbi M, Benli A. A study on the compressive strength and microstructure characteristic of alkali-activated metakaolin cement, Matéria (Rio Janeiro). 2019;24.
  • 17. Balun B, Karataş M. Influence of curing conditions on pum-ice-based alkali activated composites incorporating Portland cement. J Build Eng. 2021. https://doi.org/10.1016/j.jobe.2021.102605.
  • 18. Zhang H, Shi X, Wang Q. Effect of curing condition on compressive strength of fly ash geopolymer concrete. ACI Mater J. 2018.https://doi.org/10.14359/51701124.
  • 19. Bakharev T, Sanjayan JG, Cheng YB. Alkali activation of Australian slag cements. Cem Concr Res. 1999;29:113–20. https://doi.org/10.1016/S0008-8846(98)00170-7.
  • 20. Xiao L, Mingi X, Guang X, Jingting X. The effect of different conditions on the strength of alkali slag concrete in low temperature, 2017;1007–9467.
  • 21. Ju C, Liu Y, Jia M, Yu K, Yu Z, Yang Y. Effect of calcium oxide on mechanical properties and microstructure of alkali-activated slag composites at sub-zero temperature. J Build Eng. 2020;32:101561. https://doi.org/10.1016/j.jobe.2020.101561.
  • 22. Neupane K. High-strength geopolymer concrete-properties, advantages and challenges. Adv Mater. 2018;7:15. https://doi.org/10.11648/j.am.20180702.11.
  • 23. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A Physicochem Eng Asp. 2007. https://doi.org/10.1016/j.colsurfa.2006.05.044.
  • 24. Abubakr AE, Soliman AM, Diab SH. Effect of activator nature on the impact behaviour of alkali-activated slag mortar. Constr Build Mater. 2020;257: 119531. https://doi.org/10.1016/j.conbuildmat.2020.119531.
  • 25. Wang SD, Scrivener KL, Pratt PL. Factors affecting the strength of alkali-activated slag. Cem Concr Res. 1994;24:1033–43. https://doi.org/10.1016/0008-8846(94)90026-4.
  • 26. Duran Atiş C, Bilim C, Çelik Ö, Karahan O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23:548–55. https://doi.org/10.1016/j.conbuildmat.2007.10.011.
  • 27. Shi Z, Shi C, Wan S, Zhang Z. Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars.Cem Concr Res. 2018. https://doi.org/10.1016/j.cemconres.2018.06.005.
  • 28. Fang S, Lam ESS, Li B, Wu B. Effect of alkali contents, moduliand curing time on engineering properties of alkali activated slag. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.118799.
  • 29. Wongsa A, Boonserm K, Waisurasingha C, Sata V, ChindaprasirtP. Use of municipal solid waste incinerator (MSWI) bottom ashin high calcium fly ash geopolymer matrix. J Clean Prod. 2017.https://doi.org/10.1016/j.jclepro.2017.01.147.
  • 30. Yang KH, Cho AR, Song JK, Nam SH. Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Constr Build Mater. 2012;29:410–9. https://doi.org/10.1016/j.conbuildmat.2011.10.063.
  • 31. A. ASTM C109/C109M, Compressive Strength of Hydraulic Cement Mortars ( Using 2-in . or [ 50-mm ] Cube Specimens ) 1, Am Soc Test Mater. 2007.
  • 32. ASTM C597, Standard Test Method for Pulse Velocity Through Concrete, Am. Soc. Test. Mater. West Conshohocken, PA, USA, 2016. pp. 1–4. https://doi.org/10.1520/C0597-09.
  • 33. ASTM Standard C191, Standard test methods for Time of Setting of Hydraulic Cement by Vicat Needle, 2019. www.astm.org.
  • 34. Fernández-Jiménez A, Puertas F. Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv Cem Res. 2003. https://doi.org/10.1680/adcr.2003.15.3.129.
  • 35. Al Makhadmeh W, Soliman A. Effect of activator nature on property development of alkali-activated slag binders. J Sustain Cem Mater. 2020;10:240–56. https://doi.org/10.1080/21650373.2020.1833256.
  • 36. Ye H, Cartwright C, Rajabipour F, Radlińska A. Understanding the drying shrinkage performance of alkali-activated slag mortars. Cem Concr Compos. 2017. https://doi.org/10.1016/j.cemconcomp.2016.11.010.
  • 37. Bernal SA. Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials. Constr Build Mater.2015. https://doi.org/10.1016/j.conbuildmat.2015.08.013.
  • 38. Nasr D, Pakshir AH, Ghayour H. The influence of curing conditions and alkaline activator concentration on elevated temperaturę behavior of alkali activated slag (AAS) mortars. Constr Build Mater. 2018;190:108–19. https://doi.org/10.1016/j.conbuildmat.2018.09.099.
  • 39. Živica V. Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr Build Mater. 2007. https://doi.org/10.1016/j.conbuildmat.2006.07.002.
  • 40. ASTM International, ASTM C595-17, Standard Specification for Blended Hydraulic Cements, ASTM Int. 2017.
  • 41. Chen W, Li B, Wang J, Thom N. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste. Cem Concr Res. 2021. https://doi.org/10.1016/j.cemconres.2020.106322.
  • 42. Balun B, Karataş M. Factors affecting the setting times of pumice based alkali-activated hybrid cements. Iran J Sci Technol Trans Civ Eng. 2023. https://doi.org/10.1007/s40996-023-01184-w.
  • 43. Ibrahim M, Megat Johari MA, Rahman MK, Maslehuddin M.Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete. Constr Build Mater. 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.163.
  • 44. Bernal SA, Rodríguez ED, De Gutiérrez RM, Provis JL. Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Mater Constr. 2015. https://doi.org/10.3989/mc.2015.03114.
  • 45. Sakulich AR, Anderson E, Schauer C, Barsoum MW. Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete. Constr Build Mater. 2009;23:2951–7. https://doi.org/10.1016/j.conbuildmat.2009.02.022.
  • 46. Liu L, Xu Y, Liu H, Xie M, He Y, Shi C. Drying shrinkage and microstructure of alkali-activated slag with different mixing timeat low temperatures (−5 to 5 °C). Constr Build Mater. 2022.https://doi.org/10.1016/j.conbuildmat.2022.129529.
  • 47. Sánchez R, Palacios M, Puertas F. Characteristics and properties of oil-well cements additioned with blast furnace slag. Mater Constr. 2011. https://doi.org/10.3989/mc.2010.54110.
  • 48. Rovnaník P, Bayer P, Rovnaníková P. Characterization of alkali activated slag paste after exposure to high temperatures. Constr Build Mater. 2013;47:1479–87. https://doi.org/10.1016/j.conbuildmat.2013.06.070.
  • 49. Ya-min G, Yong-hao F, Duo Y, Yong-fan G, Chen-hui Z. Properties and microstructure of alkali-activated slag cement curedat below- And about-normal temperature. Constr Build Mater. 2015;79:1–8. https://doi.org/10.1016/j.conbuildmat.2014.12.068.
  • 50. Chen K, Lin WT, Liu W. Effect of NaOH concentration on properties and microstructure of a novel reactive ultra-fine fly ash geopolymer. Adv Powder Technol. 2021;32:2929–39. https://doi.org/10.1016/j.apt.2021.06.008.
  • 51. El-Hassan H, Shehab E, Al-Sallamin A. Influence of different curing regimes on the performance and microstructure of alkali-activated slag concrete. J Mater Civ Eng. 2018. https://doi.org/10.1061/(asce)mt.1943-5533.0002436.
  • 52. Puertas F, Torres-Carrasco M. Use of glass waste as an activatorin the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem Concr Res. 2014. https://doi.org/10.1016/j.cemconres.2013.12.005.
  • 53. Yang K, Yang Y, Deng J, Xiong D, Zhu X, Li Q, Yang C, BasheerM. Using calcium-rich precursors to improve the early-compressive strength of alkali-activated slag cement at low temperature. Struct Concr. 2022. https://doi.org/10.1002/suco.202100021.
  • 54. Lima VME, Basto PA, Henrique MA, Almeida YMB, de MeloNeto AA. Optimizing the concentration of Na 2 O in alkaline activators to improve mechanical properties and reduce costs and CO2 emissions in alkali-activated mixtures. Constr Build Mater. 2022.https://doi.org/10.1016/j.conbuildmat.2022.128185.
  • 55. Tran TT, Kwon HM. Influence of activator Na2O concentration on residual strengths of alkali-activated slag mortar upon exposureto elevated temperatures. Materials (Basel). 2018. https://doi.org/10.3390/ma11081296.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33bb513a-d4b5-487a-97ab-b1b38909484f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.