PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The structure and mechanical properties of PBS, PCL and PBAT modified with Laponite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An investigation into the effect of a synthetic variety of hectorite, i.e. Laponite (LAP), on changes in the structure and me chanical properties of poly(butylene succinate) (PBS), poly(ε-caprolactone) (PCL) and poly(butylene adipate-co-terephthalate) (PBAT) is the aim of the present paper. Polymer composites containing 1, 3, 5, and 7 wt.% LAP were prepared using a co rotating twin screw extruder. The mechanical properties (under static tension, static three-point bending and impact tests) were investigated. In addition, changes in adhesion at the phase boundary and the surface geometrical structure of the sample fractures were examined. It was found that the studied composites were characterized by a similar structure. Adhesion at the polymer-filler interface was very good for the PBAT and PCL-based composites and slightly worse for the PBS-based compo sites. The mechanical properties of the investigated polymers generally changed similarly. With the exception of the three point bending tests, all the polymers exhibited deterioration in the mechanical properties after the addition of LAP. However, considering the results of the significance tests, it is important to note that some results did not differ significantly from one another.
Rocznik
Strony
231--237
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowska-Curie 55, 87100 Toruń, Poland
  • Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowska-Curie 55, 87100 Toruń, Poland
  • Lviv Polytechnic National University, Department of Chemical Technology of Plastics Processing, Bandera 12, 79013 Lviv, Ukraine
  • Lviv Polytechnic National University, Department of Chemical Technology of Plastics Processing, Bandera 12, 79013 Lviv, Ukraine
  • Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowska-Curie 55, 87100 Toruń, Poland
  • Kazimierz Wielki University, Faculty of Materials Engineering, ul. S. Chodkiewicza 30, 85064 Bydgoszcz, Poland
  • Kazimierz Wielki University, Faculty of Materials Engineering, ul. S. Chodkiewicza 30, 85064 Bydgoszcz, Poland
Bibliografia
  • [1] Yaghmaeiyan N., Mirzaei M., Delghavi R., Montmorillonite clay: Introduction and evaluation of its applications in dif ferent organic syntheses as catalyst: A review, Results in Chemistry 2022, 4, 100549, DOI: 10.1016/j.rechem. 2022.100549.
  • [2] Petit S., Baron F., Decarreau A., Synthesis of nontronite and other Fe-rich smectites: a critical review, Clay Minerals 2017, 52(4), 469-483.
  • [3] Addison J., Vermiculite: a review of the mineralogy and health effects of vermiculite exploitation, Regulatory Toxi cology and Pharmacology 1995, 21(3), 397-405, DOI: 10.1006/rtph.1995.1054.
  • [4] Montes M.L., Barraqué F., Fuentes A.B., Taylor M.A., Mercader R.C., Miehé-Brendlé J., Sánchez R.T., Effect of synthetic beidellite structural characteristics on the proper ties of beidellite/Fe oxides magnetic composites as Sr and Cs adsorbent materials, Materials Chemistry and Physics 2020, 245, 122760, DOI: 10.1016/j.matchemphys.2020. 122760.
  • [5] Zhou C.H., Zhou Q., Wu Q.Q., Petit S., Jiang X.C., Xia S.T., Li C.S., Yu W.H., Modification, hybridization and ap plications of saponite: An overview, Applied Clay Science 2019, 168, 136-154, DOI: 10.1016/j.clay.2018.11.002.
  • [6] Carvalho T., Neves R., Hildebrando E., de Paiva L.B., Valenzuela-Diaz F.R., Organophilic synthetic Stevensite Zn: synthesis and characterization, an alternative simple method, Minerals 2022, 12(12), 1568,. DOI: 10.3390/ min12121568.
  • [7] Zhang J., Zhou C.H., Petit S., Zhang H., Hectorite: Synthe sis, modification, assembly and applications, Applied Clay Science 2019, 177, 114-138, DOI: 10.1016/j.clay.2019. 05.001.
  • [8] Pieper H., Bosbach D., Panak P.J., Rabung T., Fanghänel T., Eu (III) coprecipitation with the trioctahedral clay min eral, hectorite, Clays and Clay Minerals 2006, 54(1), 45-53, DOI: 10.1346/CCMN.2006.0540106.
  • [9] Xu C., Xu P., Gao Y., Gao F., Zhuang X., Zhang H., Dong X., Hierarchically cross-linked Gelatin/Tannic acid/Laponite hybrid antimicrobial hydrogel for hemostatic dressings, Composites Communications 2023, 43, 101743, DOI: 10.1016/j.coco.2023.101743.
  • [10] Das S.S., Hussain K., Singh S., Hussain A., Faruk A., Te byetekerwa M., Laponite-based nanomaterials for biomedi cal applications: a review, Current Pharmaceutical Design 2019, 25(4), 424-443, DOI: 10.2174/1381612825666 190402165845.
  • [11] Savitha K.S., Paghadar B.R., Kumar M.S., Jagadish R.L., Polybutylene succinate, a potential bio-degradable polymer: synthesis, copolymerization and bio-degradation, Polymer Chemistry 2022, 13(24), 3562-3612, DOI: 10.1039/ D2PY00204C.
  • [12] Barletta M., Aversa C., Ayyoob M., Gisario A., Hamad K., Mehrpouya M., Vahabi H., Poly(butylene succinate) (PBS): Materials, processing, and industrial applications, Progress in Polymer Science 2022, 132, 101579, DOI: 10.1016/ j.progpolymsci.2022.101579.
  • [13] Aliotta L., Seggiani M., Lazzeri A., Gigante V., Cinelli P., A brief review of poly(butylene succinate) (PBS) and its main copolymers: synthesis, blends, composites, biodegrad ability, and applications, Polymers 2022, 14, 844, DOI: 10.3390/polym14040844.
  • [14] Gan Z., Kuwabara K., Yamamoto M., Abe H., Doi Y., Solid-state structures and thermal properties of aliphatic aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters, Polymer Degradation and Stability 2004, 83, 289-300, DOI: 10.1016/S0141-3910(03)00274-X.
  • [15] Kijchavengkul T., Auras R., Rubino M., Alvarado E., Camacho Montero J.R., Rosales J.M., Atmospheric and soil degradation of aliphatic-aromatic polyester films, Polymer Degradation and Stability 2010, 95, 99-107, DOI: 10.1016/ j.polymdegradstab.2009.11.048.
  • [16] Jian J., Xiangbin Z., Xianbo H., An overview on synthesis, properties and applications of poly(butylene-adipate-co terephthalate) - PBAT, Advanced Industrial and Engineer ing Polymer Research 2020, 3(1), 19-26, DOI: 10.1016/ j.aiepr.2020.01.001.
  • [17] Labet M., Thielemans W., Synthesis of polycaprolactone: a review, Chemical Society Reviews 2009, 38, 3484-3504, DOI: 10.1039/b820162p.
  • [18] Mohamed R.M., Yusoh K., A review on the recent research of polycaprolactone (PCL), Advanced Materials Research 2016, 1134, 249-255, DOI: 10.4028/www.scientific.net/ AMR.1134.249.
  • [19] Woodruff M.A., Hutmacher D.W., The return of a forgotten polimer - polycaprolactone in the 21st century, Progress in Polymer Science 2010, 35, 1217-1256, DOI: 10.1016/ j.progpolymsci.2010.04.002.
  • [20] Pierozan R.C., Almikati A., Araujo G.L.S., Zornberg J.G., Optical and physical properties of Laponite for use as clay surrogate in geotechnical models, Geotechnical Testing Journal 2022, 45, 79-100, DOI: 10.1520/GTJ20210100.
  • [21] López-Angulo D., Bittante A.M.Q., Luciano C.G., Ayala- -Valencia G., Flaker C.H., Djabourov M., do Amaral Sobral P.J., Effect of Laponite® on the structure, thermal stability and barrier properties of nanocomposite gelatin films, Food Bioscience 2020, 35, 100596, DOI: 10.1016/j.fbio. 2020.100596.
  • [22] Tomás H., Alves C.S., Rodrigues J., Laponite®: A key nanoplatform for biomedical applications?, Nanomedicine: Nanotechnology, Biology and Medicine 2018, 14(7), 2407 2420, DOI: 10.1016/j.nano.2017.04.016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33bb2199-ae84-455f-8609-d005880c908e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.