Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a model and an analysis of the Tag QoS switching (TQS) protocol proposed for heterogeneous robots operating in different environments. Collaborative control is topic that is widely discussed in multirobot task allocation (MRTA) – an area which includes establishing network communication between each of the connected robots. Therefore, this research focuses on classifying, prioritizing and analyzing performance of the robot local network (RLN) model which comprises a point-to-point topology network between robot peers (nodes) in the air, on land, and under water. The proposed TQS protocol was inspired by multiprotocol label switching (MPLS), achieving a quality of service (QoS) where swapping and labeling operations involving the data packet header were applied. The OMNET++ discrete event simulator was used to analyze the percentage of losses, average access delay, and throughput of the transmitted data in different classes of service (CoS), in a line of transmission between underwater and land environments. The results show that inferior data transmission performance has the lowest priority with low bitrates and extremely high data packet loss rates when the network traffic was busy. On the other hand, simulation results for the highest CoS data forwarding show that its performance was not affected by different data transmission rates characterizing different mediums and environments.
Rocznik
Tom
Strony
23--30
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Robotics and Unmanned Systems (RUS) research group, Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
autor
- Robotics and Unmanned Systems (RUS) research group, Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
autor
- Applied Electronics (AE) research group, Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
Bibliografia
- [1] G. Stamatescu, D. Popescu, and R. Dobrescu, “Cognitive radio as solution for ground-aerial surveillance through WSN and UAV infrastructure", in Proc. of the 6th Int. Conf. on Electron., Comp. and Artif. Intell. ECAI 2014, Bucharest, Romania, 2014, pp. 51-56 (doi: 10.1109/ECAI.2014.7090210).
- [2] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multi-robot systems", The Int. J. of Robotics Research, vol. 23, no. 9, pp. 939-954, 2004 (doi: 10.1177/0278364904045564).
- [3] G. A. Korsah, A. Stentz, and M. B. Dias, „A comprehensive taxonomy for multi-robot task allocation", The Int. J. of Robotics Research, vol. 32, no. 12, pp. 1495-1512, 2013 (doi: 10.1177/0278364913496484).
- [4] L. Zhang, H. Zhong, and S. Y. Nof, “Adaptive fuzzy collaborative task assignment for heterogeneous multirobot systems", Int. J. of Intelligent Systems, vol. 30, no. 6, pp. 731-762, 2015 (doi: 10.1002/int.21725).
- [5] C. Cheng, X. Y. Yu, L. L. Ou, and Y. K. Guo, “Research on multirobot collaborative transportation control system", in Proc. Chinese Control and Decision Conf. CCDC 2016, Yinchuan, China, 2016, pp. 4886-4891 (doi: 10.1109/CCDC.2016.7531868).
- [6] N. F. Bano, T. Roppel, and I. Gokhale, “Use of mobility models for communication in collaborative robotics", in Proc. 42nd South-eastern Symp. on System Theory SSST 2010, Tyler, TX, USA, 2010, pp. 143-146 (doi: 10.1109/SSST.2010.5442846).
- [7] E. Kulla et al., “Real World Emergency Scenario Using MANET in Indoor nvironment: Experimental Data", in Proc. 9th Int. Conf. on Complex, Intell., and Software Intensive Syst. CISIS 2015, Blumenau, Brazil, pp. 336-341 (doi: 10.1109/CISIS.2015.49).
- [8] P. E. Rybski, S. A. Stoeter, M. Gini, D. F. Hougen, and N. P. Papanikolopoulos, “Performance of a distributed robotic system using shared communications channels", IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 713-727, 2002 (doi: 10.1109/TRA.2002.803460).
- [9] Q. Xiao, J. Baojun, D. Xingcheng, Z. Xiaotao, D. Yang, and L. Hui, „A robot remote control system based on VPN and TCP/IP protocol", in Proc. IEEE Int. Conf. on Mechatron. and Autom. ICMA 2008, Takamatsu, Japan, 2008, pp. 285-289 (doi: 10.1109/ICMA.2008.4798767).
- [10] K. Kyung Jin, S. Il Hong, K. Sung Hoon, and O. Sang Rok, “A novel real-time control architecture for internet-based thin-client robot; simulacrum-based approach", in Proc. IEEE Int. Conf. on Robot. and Autom., Pasadena, CA, USA, 2008, pp. 4080-4085 (doi: 10.1109/ROBOT.2008.4543838).
- [11] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Architecture", RFC 3031, IETF, 2001 [Online]. Available: https://tools.ietf.org/html/rfc3031
- [12] OMNeT++ Discrete Event Simulator [Online]. Available: https://omnetpp.org
- [13] Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications", IEEE Commun. Surveys & Tutorials, vol. 19, no. 1, pp. 204-238, 2017 (doi: 10.1109/COMST.2016.2618841).
- [14] J. Lloret, S. Sendra, M. Ardid, and J. J. P. C. Rodrigues, “Underwater wireless sensor communications in the 2.4 GHz ISM frequency band", Sensors, vol. 12, no. 4, p. 4237-4264, 2012 (doi: 10.3390/s12040423).
- [15] D. Pompili and I. F. Akyildiz, “Overview of networking protocols for underwater wireless communications", IEEE Communications Magazine, vol. 47, no. 1, pp. 97-102, 2009 (doi: 10.1109/MCOM.2009.4752684).
- [16] M. Dautta and M. I. Hasan, “Underwater vehicle communication using electromagnetic fields in shallow seas", in Proc. Int. Conf. on Elec., Comp. and Commun. Engin. ECCE 2017, Cox's Bazar, Bangladesh, 2017, pp. 38-43 (doi: 10.1109/ECACE.2017.7912875).
- [17] H. Yoshida et al., “Study on land-to-underwater communication", in Proc. 14th Int. Symp. on Wirel. Personal Multim. Commun. WPMC 2011, 2011, Brest, France, 2011, pp. 1-5.
- [18] B. T. Doshi, R. Nagarajan, G. N. S. Prasanna, and M. A. Qureshi, “Future WAN architecture driven by services, traffic volume, and technology trends", Bell Labs Tech. J., vol. 6, no.1, pp. 13-32, 2001 (doi: 10.1002/bltj.2261).
- [19] M. C. Chuah, K. Medepalli, S. Y. Park, and J. Wang, “Quality of service in third-generation IP-based radio access networks", Bell Labs Tech. J., vol. 7, no. 2, pp. 67-89, 2002 (doi: 10.1002/bltj.10006).
- [20] O. Klopfenstein, “Rerouting tunnels for MPLS network resource optimization", Eur. J. of Operat. Res., vol. 188, no. 1, pp. 293-312, 2008 (doi: 10.1016/j.ejor.2007.04.016).
- [21] S. Ricciardi, F. Palmieri, A. Castiglione, and D. Careglio, “Energy efficiency of elastic frequency grids in multilayer IP/MPLS-over-exgrid networks", J. of Netw. and Comp. Appl., vol. 56, pp. 41-47, 2015 (doi: 10.1016/j.jnca.2015.06.014).
- [22] M. Fathy, S. GholamalitabarFirouzjaee, and K. Raahemifar, “Improving QoS in VANET Using MPLS", Procedia Comp. Science, vol. 10, pp. 1018-1025, 2012 (doi: 10.1016/j.procs.2012.06.141).
- [23] Z. Song, P. W. C. Prasad, A. Alsadoon, L. Pham, and A. Elchouemi, “Upgrading Internet service provider (ISP) network in multiprotocol label switching (MPLS) and border gateway protocol (BGP) environment", in Proc. Int. Conf. on Adv. in Elec., Electron. and Syst.Engin. ICAEES 2016, pp. 237-241, Putrajaya, Malaysia, 2016 (doi: 10.1109/ICAEES.2016.7888045).
- [24] B. Genge and C. Siaterlis, “Analysis of the effects of distributed denial-of-service attacks on MPLS networks", Int. J. of Crit. Infrastruc. Protect., vol. 6, no. 2, pp. 87-95, 2013 (doi: 10.1016/j.ijcip.2013.04.001).
- [25] M. N. Soorki and H. Rostami, “Label switched protocol routing with guaranteed bandwidth and end to end path delay in MPLS networks", J. of Netw. and Comp. Appl., vol. 42, pp. 21-38, 2014 (doi: 10.1016/j.jnca.2014.03.008).
- [26] G. A. Mazhin, M. Bag-Mohammadi, M. Ghasemi, and S. Feizi, “Multi-layer architecture for realization of network virtualization using MPLS technology", ICT Express, vol. 3, no. 1, pp. 43-47, 2017 (doi: 10.1016/j.icte.2016.07.002).
- [27] F. Francois, N.Wang, K. Moessner, S. Georgoulas, and R. de Oiveira Schmidt, “Leveraging MPLS backup paths for distributed energyaware traffic engineering", IEEE Trans. on Netw. and Serv. Manag., vol. 11, no. 2, pp. 235-249, 2014 (doi: 10.1109/TNSM.2014.2321839).
- [28] L. Andersson, A. B. Acreo, and R. Asati, „Multiprotocol Label Switching (MPLS) Label Stack Entry: “EXP" Field Renamed to “Traffic Class" Field", RFC 5462, IETF, 2009 [Online]. Available: https://tools.ietf.org/html/rfc5462
- [29] L. Wu et al., “Multi-Protocol Label Switching (MPLS) Support of Differentiated Services", RFC 3270, IETF, 2002 [Online]. Available: https://tools.ietf.org/html/rfc3270
- [30] N. Rouhana and E. Horlait, “Differentiated services and integrated services use of MPLS", in Proc. 5th IEEE Symp. on Comp. and Commun. ISCC 2000., Antibes-Juan Les Pins, France, 2000, pp. 194-199 (doi: 10.1109/ISCC.2000.860638).
- [31] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB Group", RFC 2597, IETF, 1999 [Online]. Available: https://tools.ietf.org/html/rfc2597
- [32] R. Pletka, P. Droz, and B. Stiller, “A Buffer-Management Scheme for Bandwidth and Delay Differentiation Using a Virtual Scheduler", in Networking - ICN 2001: First International Conference on Networking Colmar, France, July 9-13, 2001 Proceedings, Part I, P. Lorenz, Ed. LNCS, vol. 2093, pp. 218-234. Berlin, Heidelberg: Springer, 2001.
- [33] R. Balakrishnan, Advanced QoS for Multi-Service IP/MPLS Networks. Wiley, 2012 (ISBN: 9781118621479).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33b9bf74-3dca-40a0-aa43-313bf05173f9