PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Propagation of SH waves in an regular non homogeneous monoclinic crustal layer lying over a non-homogeneous semi-infinite medium

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper discusses the dispersion equation for SH waves in a non-homogeneous monoclinic layer over a semi infinite isotropic medium. The wave velocity equation has been obtained. In the isotropic case, when non-homogeneity is absent, the dispersion equation reduces to the standard SH wave equation. The dispersion curves are depicted by means of graphs for different values of non-homogeneity parameters for the layer and semi-infinite medium.
Rocznik
Strony
447--459
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
autor
  • Govt. Polytechnic, Faculty of Science Jalandhar, INDIA
autor
  • Sant Baba Bhag Singh University, Faculty of Science Jalandhar, INDIA
Bibliografia
  • [1] Stoneley R. (1924): Elastic waves at the surface of separation of two solids. – Proc. R. Soc. A 806. pp.416-428.
  • [2] Bullen K.E. (1965): Theory of Seismology. – Cambridge University Press.
  • [3] Ewing W.M., Jardetzky W.S. and Press F. (1957): Elastic waves in layered media. – New York: McGraw-Hill.
  • [4] Hunter S.C. (1970): Viscoelastic waves, Progress in Solid Mechanics, I. - (ed: Sneddon IN and Hill R) Cambridge University Press.
  • [5] Jeffreys H. (1970): The Earth. – Cambridge University Press.
  • [6] Sezawa K. (1927): Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces. – Bull. Earthq. Res. Inst. Tokyo, 3. pp.1-18.
  • [7] Thomson W. (1950): Transmission of elastic waves through a stratified solid medium. – J. Appl. Phys., vol.21, pp.89–93.
  • [8] Haskell N.A. (1953): The dispersion of surface waves in multilayered media. – Bull. Seis. Soc. Amer., vol.43, pp.17-34.
  • [9] Biot M.A. (1965): Mechanics of Incremental Deformations. – J. Willy.
  • [10] Sinha N. (1967): Propagation of Love waves in a non-homogeneous stratum of finite depth sandwiched between two semi-infinite isotropic media. – Pure Applied Geophysics, vol.67. pp.65-70.
  • [11] Roy P.P. (1984): Wave propagation in a thin two layered medium with stress couples under initial stresses. – Acta Mechanics, vol.54, pp.1-21.
  • [12] Datta B.K. (1986): Some observation on interactions of Rayleigh waves in an elastic solid medium with the gravity field. – Rev. Roumaine Sci. Tech. Ser. Mec. Appl., vol.31. pp.369-374.
  • [13] Chattopadhyay A., Chakraborty M. and Pal A.K. (1983): Effects of irregularity on the propagation of guided SH waves. – Jr. de Mecanique Theo. et appl, vol.2, No.2. pp.215-225.
  • [14] Goda M.A. (1992): The effect of inhomogeneity and anisotropy on Stoneley waves. – Acta Mech., vol.93, No.1-4. pp.89-98.
  • [15] Gupta S., Vishwakarma S.K., Majhi D.K. and Kundu S. (2012): Influence of linearly varying density and rigidity on torsional waves in inhomogeneous crustal layer. – Appl. Math. Mech.-Engl. Ed., vol.33, No.10, pp.1239-1252.
  • [16] Chattopadhyay A., Gupta S., Singh A.K. and Sahu S.A. (2009): Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. – International Journal of Engineering, Science and Technology, vol.1, No.1, pp.228–244.
  • [17] Chattopadhyay A., Gupta S., Sahu S.A. and Singh A.K. (2010): Dispersion of shear waves in an irregular magnetoelastic self-reinforced layer sandwiched between two isotropic half-spaces. – International Journal of Theoretical and Applied Mechanics, vol.5, No.1, pp.27-45.
  • [18] Chattopadhyay A., Gupta S., Singh A.K. and Sahu S.A. (2010): Propagation of SH waves in an irregular non-homogeneous monoclinic crustal layer over a semi-infinite monoclinic medium. – Applied Mathematical Sciences, vol.4, No.44, pp.2157-2170.
  • [19] Sethi M., Gupta K.C., Rani M. and Vasudeva A. (2013): Surface waves in homogeneous viscoelastic media of higher order under the influence of surface stresses. – J. Mech. Behav. Mater., vol.22, No.5-6, pp.185–191.
  • [20] Graff K.F. (1991): Wave Motion Elastic Solids. (Oxford Engineering Science Series), Dover Publications, New ed.
  • [21] Gubbins D. (1990): Seismology and Plate Tectonics. – Cambridge: Cambridge University Press.
  • [22] Tierstein H.F. (1969): Linear Piezoelectric Plate Vibrations. – New York: Plenum Press.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33b07afe-974c-439b-a940-267cc236f41f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.