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Abstract  

In this paper the non-linear vibration behaviour and its modification due to the piezoelectric actuation of a 

beam with varying cross section and resting on an elastic foundation has been discussed. Due to assumed end 

conditions the stretching force emerges during the system vibrations. That force can be modified by an axial 
residual force to enhance or reduce the value of vibrations frequency of the beam. The system is divided onto 

three segments with the central segment consisted of the core beam and two colocally and perfectly bonded 

piezo patches. In order to obtain the approximate solutions of the non-linear frequency of the systems the 
Lindstedt-Poincare method has been utilized. Vast number of numerical results shows that not only the 

structural parameters of the system have significant effect on its non-linear vibration behaviour at a given 

amplitude but also the residual force and the elastic foundation modulus.  
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1. Introduction 

The non-linear lateral vibrations of beam structures have been the subject of interest of 

many researchers. From the engineering point of view the beam-type structures are very 

interesting due to their wide application in civil and mechanical engineering, automotive, 

aviation, aeronautics industry, medical systems and equipment and many more. It is well 

known that any mechanical structure or its part should be protected from exposure to 

long time periods of resonance. Piezoelectric materials which are also called “smart 

materials” allow to modify the vibration frequency and buckling load of a given 
structure due to the inverse piezoelectric effect. That effect result in dimension changes 

of piezoelement which depend on the applied electric field vector. It should be noted that 

direct piezoelectric effect is also widely utilized in many areas of life such as sound 

processing, pacemakers, airbags, lighters etc. 

As the research precursor of non-linear frequency studies shall be deemed to 

Wojnowsky-Krieger [1] whose thesis concerned the effect of the axial force on the non-

linear frequency of simply supported beams. In the subsequent years there were vast 

number of literature positions published and experimental studies performed concerning 

the problem of the non-linear vibrations. Azrar et al. [2] presented mathematical 

approach concerning the second order approximation to obtain the non-linear vibration 

frequency for pinned-pinned and clamped-clamped beams which are close to the exact 

solution in a large amplitude frequency range. Moreover authors presented a very 
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thorough discussion about increasing the accuracy of the obtained amplitude-frequency 

solutions. Benamar et al. [3] proposed a general model of the non-linear vibrations at 

large amplitudes for standardly supported beams to describe the influence of amplitude 

on both the mode shapes and the natural frequency. It was observed that near the clamps 

there were a great increase in beam curvatures which caused increased deflection 

resulting in highly non-linear increase of bending strain. A vast literature overview 

concerning the active, passive, semi-active and hybrid vibration control of the systems 

was presented by Song et al [4]. It was stated that piezoelectric materials despite some 

limitations have many advantages such as low-cost, low weight and ease of 

implementation. On the basis of Faria [5] as well as Zehetner and Irschik [6] 

considerations it can be stated that only for the beams which ends are mounted to 

prevent their axial displacement, both the stability and vibration frequency can be 

modified by piezoelectric actuation. Oguamanan et al. [7] investigated the influence of 

piezoelectric material in plane stress on beams mechanical performance. Authors 

showed that in systems where piezoelectric material was bonded both to the upper and 

bottom surface of the beam, especially the first frequency can be significantly modified. 

It was observed that depending on the applied electric field vector direction, vibration 

frequency can be enhanced or reduced. Moreover authors demonstrated that 

piezoactuators localized near the beam supports, give slightly more effective control of 

the system vibrations. The influence of piezoactuators length, its localization and the 

piezoelectric force on the amplitude-nonlinear frequency relationship in a slender 

pinned-pinned beam has been studied by Przybylski [8]. It was proved that stretching 

piezoelectric force result in an increase of the natural frequency and decrease of non-

linear frequency, whereas compressive piezo-force resulted in opposite system 

behaviour. A broader literature overview with wider area of study of slender systems 

with bonded piezoelectric materials can be found in [9]. 

In this paper the influence of vibrations amplitude, piezosegment length and Winkler 

elastic foundation modulus on the non-linear frequency for a pinned-pinned and 

clamped-clamped beams is investigated. Moreover the non-linear vibration adjustment 

due to piezoelectric actuation is examined. The object of study is a three segment system 

made of aluminium host beam with two symmetrically piezo patches bonded perfectly 

on the upper and bottom surface of the central segment. In order to obtain approximate 

solutions the Lindstedt-Poincare method has been utilized. 

2. Problem formulation 

The main objective of this work is to formulate and solve the problem of the non-linear 

vibrations of a stepped beam resting on the Winkler elastic foundation and to estimate 

the influence of both the structural parameters and the piezoelectric actuation on the non-

linear frequency-amplitude relationship. Due to the moderately large amplitude of 

vibrations, the von Karman theory has been applied according to which during 

transversal vibrations, the axial inertia effect can be treated as insignificant. 

The scheme of three-segmented system composed of a core beam with both ends 

clamped and two piezoelectric patches bonded along the central segment is shown in 

Fig. 1. 
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a) 

 

b) 

 

Figure 1. Scheme of clamped-clamped beam resting on elastic Winkler foundation with 

two piezoelectric patches colocally mounted along the central segment (a), piezosegment 

cross-section (b) 

The applied voltage, symbolized by the electric field vector E in Fig. 1, is exactly the 

same for the upper and bottom piezo actuator which results in the axial 

stretching/compressive force being generated dependently on the electric field vector 

sense. A derivation of the residual force equation appearing along the stepped beams 

with n-pairs of piezoelectric actuators has been presented in [9]. According to these 

considerations for the three segmented system the residual force can be described as 

follows 
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where: h denotes the relation of the piezosegment axial stiffness to that of the beam, 

F = -2be31V is the piezoelectric force induced by piezoceramic patches of width b, when 

piezo material is characterised by constant e31 and the applied voltage is equal to V, L is 

the length of the beam, L2 is the length of piezosegment. According to von Karman 

theory and the actuality that algebraic sum of the axial displacement of three segments is 

equal to zero, the force which stretches the beam during its transverse vibration can be 

expressed as 
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Introducing both residual piezo-force Fr and dynamic force S(t) into the governing 

equation of motion for the i-th segment, that equation takes the following non-

dimensional form 
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where the dimensionless parameters are defined as  
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Following notation has been assumed: EpIp, EbIb - the bending stiffness of piezo patches 

and that of a beam, respectively, Ap, Ab - the cross section area of piezopatches and 

beam, respectively, rp, rb - the material densities of the actuators and beam, respectively, 

ω - the natural frequency of the system, t is time, k denotes the Winkler foundation 

modulus. 

The non-dimensional boundary conditions for a pinned-pinned beam are: 
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whereas for a clamped-clamped beam take the form: 
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where: I and II are the Roman numerals denoting the order of the derivative with respect 

to the space variable x. 

The continuity conditions are independent from the type of supports and describe the 

equality of the transversal force, moments, slopes and displacements between segments: 
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3. Approximate solutions 

In order to obtain approximate solutions of the non-linear boundary problem the 

Lindstedt-Poincare method has been utilized, according to which relevant quantities are 

expanded into exponential series with respect to the small amplitude parameter e 
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where separation of space and time variable are described as: 
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Introducing expansions from (8-10) into the equation of motion (3) and axial dynamic 

force ( )t2s  expressed in (4) and then equating the terms of respective e exponents to 

zero, an infinite set of equations of motion and axial force is obtained. 

By solving the first pair of equations from the infinite set of equations with use of 

boundary conditions (5-6) an infinite number of solutions for the natural frequency is 

obtained, whereas from the third equation after applying the orthogonally condition the 

second term of frequency ω2 can be obtained. The relationship of non-linear frequency ω 

and amplitude e are determined on the basis of equation (10), with a customary limit up 

to the second order. 

4. Numerical results 

In this chapter the numerical results concerning the non-linear frequency-amplitude 

relationship for clamped-clamped and pinned-pinned beams with piezosegment centrally 

localised are presented. All analysis can be performed by using the non-dimensional 

quantities, but to show its usefulness for engineering applications it has been assumed 

that the host beam thickness tb = 3.0 [mm] and piezo patches tp = 0.5 [mm] each, 

whereas both the beam and piezo patches width b = 20 [mm]. The influence of adhesive 

layer thickness has been taken as negligibly small. The beam was made of a 

homogeneous elastic isotropic aluminium, while piezoceramic actuators were made of a 

homogeneous elastic transversely isotropic P41 material (Annon Piezo Technology Ltd. 

Co.). Electromechanical properties of the adopted materials for the numerical analysis 

are shown in Tab. 1. 

Table 1. Material properties of beam and piezo patches 

Property Unit Beam Piezoceramic 

E GPa 70.00 83.33 

r kg/m3 2720 7450 

d31 C/N - 1.00×10-10 

Umax V/mm - 2000 

The first group of plots presented in Fig. 2 shows the influence of structural parameters 

of the beam and the elastic foundation stiffness modulus on the mentioned relationship, 
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whereas in Fig. 3 the role of piezoelectric actuation in modification the obtained curves 

for the system with piezosegment of length l2 = 0.80. 
 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 2. The influence of piezosegment length on amplitude – non-linear frequency 

relationship in clamped-clamped (a, b) and pinned-pinned (c, d) beams; remaining 

parameters: Winkler elastic foundation modulus b = 0 (a, c),  b = 100 (b, d)  

Comparing the curve courses for the clamped-clamped support (Fig. 2a, b) it can be 

stated than the longer the piezosegment length the smaller the amplitude influence on the  

non-linear frequency. For the pinned-pinned beam (Fig. 2c,d) at the whole range of the 

amplitude, the non-linear frequency is lower for the piezosegment of length l2 = 0.80 

than for the piezosegment mounted at the entire beam (l2 = 1.00), whereas for the lengths 

l2 = 0.0 and l2 = 0.20 the vibrations aims to be the same with increased elastic foundation 

modulus. In both clamped-clamped and pinned-pinned system together with an increase 
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of the elastic foundation modulus, the non-linear frequency decreases at the whole range 

of amplitudes and for any value of the piezo patches length. 

In order to examine the piezoelectric actuation influence on the non-linear frequency 

– amplitude relationship two values of piezoelectric force has been chosen f 2 = ±π2. It 

should be noted that the range of non-dimensional residual force resulting from the 

applied electric field is far below the depoling field for the piezoceramic material. 

 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 3. The influence of piezoelectric actuation on the amplitude-non-linear frequency 

relationship for clamped-clamped (a, b) and pinned-pinned (c, d) beams; remaining 

parameters: Winkler elastic foundation modulus b = 0 (a, c),  b = 100 (b, d) 

As it is presented in Fig. 3 in both cases (clamped-clamped and pinned-pinned beam) 

at any given amplitude and elastic foundation modulus the tensile piezoelectric force 

reduce the non-linear frequency, while the natural frequency is increased comparing to 

the beam without piezoactuation, whereas compressive piezo-force acts in an opposite 
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way. Moreover the higher stiffness of Winkler elastic foundation the lower value of non-

linear frequency at the whole range of amplitude. It should also be noted that more 

significant affection of Winkler elastic foundation on the non-linear frequency – 

amplitude relationship for systems with lower external support stiffness.  

5. Conclusions  

In this study the problem of non-linear vibrations for the non-uniform Euler-Bernoulli 

beams has been discussed. Moreover the enhancement and reduction of non-linear 

vibrations due to the piezoelectric actuation has been examined. It should be noted that 

performed studies can be useful in the manufacture of elements which are responsible of 

controlling static and dynamic response of structures. 

It was also shown in this paper that regardless of system external support, the higher 

value of Winkler foundation modulus parameter results in decreasing of the non-linear 

frequency. There was also proved that piezoelectric actuation can enhance the non-linear 

vibration frequency via compressive force induced, while the natural frequency is 

increased and the opposite system behaviour is obtained for the tensile piezo-force. 
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