PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low voltage winding insulation systems under the influence of high du/dt slew rate inverter voltage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Variable speed and low voltage electrical drives are commonly operated by frequency converters. According to recent developments, there is a trend in the area of semi-conductors, that switching frequency and voltage slew rate will increase significantly. The aim of these semiconductors is to reduce the switching losses and to increase the switching frequency, which enables to reduce the size of passive components in the powerelectric circuit. This results in less material effort and lower cost, for the power electronic component. However, electric motors operated by high slew rate inverters show problems in the winding insulation, which have to be analyzed. Such problems are well known for high voltage machines. Due to the increasing slew rate, this problematic occurs in low voltage machines nowadays as well. Here, the influence of fast switching semiconductors on the winding insulation system is studied, using accelerated ageing tests with fast switching high-voltage generators.
Rocznik
Strony
187--202
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
  • Institute of Electrical Machines (IEM) RWTH Aachen University Schinkelstraße 4 52062 Aachen, Germany
autor
  • Institute of Electrical Machines (IEM) RWTH Aachen University Schinkelstraße 4 52062 Aachen, Germany
autor
  • Institute of Electrical Machines (IEM) RWTH Aachen University Schinkelstraße 4 52062 Aachen, Germany
Bibliografia
  • [1] Wrzecionko B., Biela J., Kolar J.W., SiC Power Semiconductors in HEVs: Influence of Junction Temperature on Power Density, Chip Utilization and Efficiency, 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, pp. 3834–3841 (2009).
  • [2] Bortis D., Wrzecionko B., Kolar J.W., A 120◦C ambient temperature forced air-cooled normallyoff SiC JFET automotive inverter system, IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2345–2358 (2014).
  • [3] Harada K., Maki K., Pounyakhet S., Tokiyoshi J., Kozako M., Ohtsuka S., Hikita M., Switching characteristics of SiC-VJFET and manufacture of inverter, The 2010 International Power Electronics Conference – ECCE ASIA, Sapporo, pp. 176–179 (2010).
  • [4] Köneke T., Mertens A., Domes D., Kanschat P., Highly Efficient 12kVA Inverter with Natural Convection Cooling Using SiC Switches, International conference, Power Electronics, Intelligent Motion and Power Quality (PCIM), Nuremberg (2011).
  • [5] Biela J., Schweizer M., Waffler S., Kolar J.W., SiC versus Si-Evaluation of Potentials for Performance Improvement of Inverter and DC-DC Converter Systems by SiC Power Semiconductors, IEEE Transactions on Industrial Electronics, vol. 58, no. 7 (2011).
  • [6] Gong X., Ferreira J.A., Comparison and Reduction of Conducted EMI in SiC JFET and Si IGBT-Based Motor Drives, IEEE Transactions on Power Electronics, vol. 29, no. 4 (2014).
  • [7] Ruf A., Paustenbach J., Franck D., Hameyer K., A methodology to identify electrical ageing of winding insulation systems, IEEE International Electric Machines and Drives Conference, (IEMDC) Miami, FL, pp. 1–7 (2017).
  • [8] Kaufhold M., Aninger H., Berth M., Speck J., Eberhardt M., Electrical stress and failure mechanism of the winding insulation in PWM-inverter-fed low-voltage induction motors, in IEEE Transactions on Industrial Electronics, vol. 47, no. 2, pp. 396–402 (2000).
  • [9] IEC 60034-18-1:2010, Rotating electrical machines – Part 18-1: Functional evaluation of insulation systems (2010).
  • [10] IEC 60034-18-42, Rotating electrical machines – Part 18-42: Qualification and acceptance tests for partial discharge resistant electrical insulation systems (Type II) used in rotating electrical machines fed from voltage converters (2008).
  • [11] IEC 60034-18-41 ed. I, Rotating electrical machines – Part 18-41: Partial discharge free electrical insulation systems (Type I) used in rotating electrical machines fed from voltage converters – Qualification and quality control tests (2014).
  • [12] Jung C., Power Up with 800-V Systems: The benefits of upgrading voltage power for battery-electric passenger vehicles, IEEE Electrification Magazine, vol. 5, no. 1, pp. 53–58 (2017).
  • [13] Kikuchi H., Hanawa H.,Inverter surge resistant enameled wire with nanocomposite insulating material, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 19, no. 1, pp. 99–106 (2012).
  • [14] Kaufhold M., Failure mechanism of the interturn insulation of low voltage electric machines fed by pulse controlled inverters, Proceedings of 1995 Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach, VA, USA, pp. 254–257 (1995).
  • [15] Kaufhold M., Borner G., Eberhardt M., Speck J., Failure mechanism of the interturn insulation of low voltage electric machines fed by pulse-controlled inverters, IEEE Electrical Insulation Magazine, vol. 12, no. 5, pp. 9–16, Sept.-Oct. (1996).
  • [16] Fabiani D., Montanari G.C., Cavallini A., Mazzanti G., Relation between space charge accumulation and partial discharge activity in enameled wires under PWM-like voltage waveforms, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 3, pp. 393–405 (2004).
  • [17] Fabiani D.,Accelerated degradation of ac-motor winding insulation due to voltage waveforms generated by adjustable speed drives, PhD Thesis, University of Bologna (2003).
  • [18] Hameyer K., Ruf A., Pauli F., Influence of fast switching semiconductors on the winding insulation system of electrical machines, 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, pp. 740–745 (2018).
  • [19] IEC 60317-0-1, Specifications for particular types of winding wires – Part 0-1: General requirements – Enameled round copper wire (2013).
  • [20] IEC 61934, Electrical insulating materials and systems – Electrical measurement of partial discharges (PD) under short rise time and repetitive voltage impulses (2011).
  • [21] LWW-Group: Dahrentrad Daprest 200, Round enamelled conductor of copper, corona resistant, class 200, datasheet.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33af77e4-c6b3-4cf9-b6b7-088f7c0a865f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.