PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

On the stability of some systems of exponential difference equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations.
Rocznik
Strony
95--115
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
  • Democritus University ol Thrace School ol Engineering Xanthi, 67100, Greece
  • Democritus University ol Thrace School ol Engineering Xanthi, 67100, Greece
autor
  • Democritus University ol Thrace School ol Engineering Xanthi, 67100, Greece
Bibliografia
  • [1] J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
  • [2] D. Clark, M.R.S. Kulenovic, J.F. Selgrade, Global asymptotic behavior of a two--dimensional difference equation modelling competition, Nonlinear Anal. 52 (2003), 1765-1776.
  • [3] S. Elaydi, Discrete Chaos, 2nd ed., Chapman & Hall/CRC, Boca Raton, London, New York, 2008.
  • [4] E. El-Metwally, E.A. Grove, G. Ladas, R. Levins, M. Radin, On the difference equation, xn+i =a + I3xn-ie~'Xn, Nonlinear Anal. 47 (2001), 4623-4634.
  • [5] E.A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC, 2005.
  • [6] E.A. Grove, G. Ladas, N.R. Prokup, R. Levis, On the global behavior of solutions of a biological model, Comm. Appl. Nonlinear Anal. 7 (2000), 33-46.
  • [7] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 1983.
  • [8] L. Gutnik, S. Stevic, On the behaviour of the solutions of a second order difference equation, Discrete Dyn. Nat. Soc. 14 (2007), Article ID 27562.
  • [9] B. Irićanin, S. Stevic, Some systems of nonlinear difference equations of higher order with periodic solutions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13 (3-4) (2006), 499-508.
  • [10] B. Irićanin, S. Stevic, Eventually constant solutions of a rational difference equation, Appl. Math. Comput. 215 (2009), 854-856.
  • [11] B. Irićanin, S. Stevic, On two systems of difference equations, Discrete Dyn. Nat. Soc. 4 (2010), Article ID 405121.
  • [12] C.M. Kent, Converegence of solutions in a nonhyperbolic case, Nonlinear Anal. 47 (2001), 4651-4665.
  • [13] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher-Order With Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [14] M.R.S. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman & Hall/CRC, 2002.
  • [15] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Second Edition, Applied Mathematical Sciences, vol. 112, Spinger, New York, 1998.
  • [16] R. Luis, S. Elaydi, H. Oliveira, Stability of a Ricker-type competion model and the competitive exclusion principle, J. Biol. Dyn. 5 (2011) 6, 636-660.
  • [17] I. Ozturk, F. Bozkurt, S. Ozen, On the difference equation yn+1 = aj~+y~"™ , Appl. Math. Comput. 181 (2006), 1387-1393.
  • [18] G. Papaschinopoulos, C.J. Schinas, G. Ellina, On the dynamics of the solutions of a biological model, J. Difference Equ. Appl. 20 (2014) 5-6, 694-705.
  • [19] N. Psarros, G. Papaschinopoulos, C.J. Schinas, Study of the stability of a 3 x 3 system of difference equations using centre manifold theory, Appl. Math. Lett., DOI: 10.1016/j.aml.2016.09.002 (2016).
  • [20] S. Stevic, Asymptotic behaviour of a sequence defined by iteration with applications, Colloq. Math. 93 (2002) 1, 267-276.
  • [21] S. Stevic, On the recursive sequence [formula] Taiwanese J. Math. 7 (2003) 2, 249-259.
  • [22] S. Stevic, Asymptotic behaviour of a nonlinear difference equation, Indian J. Pure Appl. Math. 34 (2003) 12, 1681-1687.
  • [23] S. Stevic, A short proof of the Cushing-Henson conjecture, Discrete Dyn. Nat. Soc. 2006 (2006), Article ID 37264.
  • [24] S. Stevic, On a discrete epidemic model, Discrete Dyn. Nat. Soc. 10 (2007), Article ID 87519.
  • [25] S. Stevic, On a system of difference equations, Appl. Math. Comput. 218 (2011), 3372-3378.
  • [26] S. Stevic, On a system of difference equations with period two coefficients, Appl. Math. Comput. 218 (2011), 4317-4324.
  • [27] S. Stevic, On a third-order system of difference equations, Appl. Math. Comput. 218 (2012), 7649-7654.
  • [28] S. Stevic, On some periodic systems of max-type difference equations, Appl. Math. Comput. 218 (2012), 11483-11487.
  • [29] S. Stevic, On some solvable systems of difference equations, Appl. Math. Comput. 218 (2012), 5010-5018.
  • [30] S. Stevic, On a solvable system of difference equations of kth order, Appl. Math. Comput. 219 (2013), 7765-7771.
  • [31] S. Stevic, On a cyclic system of difference equations, J. Difference Equ. Appl. 20 (2014) (5-6), 733-743.
  • [32] S. Stevic, Bounde.dne.ss and peristence of some cyclic-type systems of difference equations, Appl. Math. Lett. 56 (2016), 78-85.
  • [33] S. Stevic, J. Diblik, B. Irićanin, Z. Śmarda, On a third-order system, of difference equations with variable coefficients, Abstr. Appl. Anal. 2012 (2012), Article ID 508523.
  • [34] D. Tilman, D. Wedin, Oscillations and chaos in the dynamics of a perennial grass, Nature 353 (1991), 653-655.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33a80ee0-1556-4b3c-ac47-9557b7b71252
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.