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Abstract. In this paper we prove the stability of the zero equilibria of two systems of
difference equations of exponential type, which are some extensions of an one-dimensional
biological model. The stability of these systems is investigated in the special case when one
of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1,
using centre manifold theory. In addition, we study the existence and uniqueness of positive
equilibria, the attractivity and the global asymptotic stability of these equilibria of some
related systems of difference equations.
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1. INTRODUCTION

Difference equations and systems of difference equations containing exponential terms
have numerous potential applications in biology. A large number of papers dealing
with such or related equations have been published (see, e.g, [6,16,22-24]). In [34],
the following model incorporating litter inhibition is discussed:

a—bL; 2 a—bLy

c + ckN c

- L _ 7t -
1+eeble’ T 14 1+ ea—bLe’

where B is the living biomass, L the litter mass, N the total soil nitrogen, ¢ the time
(measured in years) and constants a, b, ¢,d > 0 and 0 < k < 1. In this model, the living
biomass (B) is reduced below its equilibrium, by litter. Litter decay is determined by d,
while litter production is k times the living biomass. The complexity of the grassland
ecosystem makes its study interesting but complicated. In addition, in [18], the authors
studied the boundedness and the persistence of the positive solutions, the existence,
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the attractivity and the global asymptotic stability of the unique positive equilibrium,

as well as the existence of periodic solutions of the following equation:
2 k—dx
x e "
b+ xp, 1+ ef—den

LInt1 = a )
where a € (0,1), a,b,c,d, k are positive constants and z is a positive real number.

Motivated by this discrete time model and recent studies of symmetric and close
to symmetric systems of difference equations (see, e.g, [9,11,19,25,26]), in this paper,
we will study the stability of the zero equilibria of the following systems:

n n xnekl—dlwn T, n ynekQ—den (1 1)
Tn+1 = A1 C1 1= Qs Cc2 .
nt b1+ yn 1+ ekr1—dizn’ Yn+ by + 2, 1 + ek2—dayn
and
k1—diyn ko—doxy,
. —a T L ‘o Yne 1 1Y y = Yn Tpe 2 2T (1 2)
n—+ bl ¥ T, 1 ¥ ek17d1yn ) n+ )

a +c
2 b2 —+ Un 2 ]_ + ek2*d2$n

where a1, as, by, ba, 1, 2, dyi, do, k1, ko, are real constants and the initial values zq
and gy are real numbers.

In addition, we will investigate the asymptotic behaviour of the positive solutions
of the following systems of difference equations:

yn2 N ed1—kizn eb2—kawn N ed2—k3yn
x =a c =a &
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1.5
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where a1, as, by, ba, c1, co, di, da, k1, ko, ks are positive constants and the initial
values o and yo are positive.

The results of this paper could be used to create more elaborate biological models
to facilitate understanding the underlying ecological mechanisms. The results obtained
for the systems (1.1) and (1.2) provide conditions for stability of the zero equilibria
of those systems. Those equilibria correspond to the physical situation where both
quantities (x and y) vanish.

The asymptotic behaviour of positive solutions of scalar equations related to the
previous systems is studied in [22]. For some related cyclic systems of difference
equations see [9,28,31] and [32], as well as some three-dimensional systems (see, e.g.,
[19,27,33]). Finally we note that, since difference equations have several applications in
applied sciences, there exists a rich bibliography concerning theory and applications of
difference equations (see [1-34]).
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2. STABILITY OF ZERO EQUILIBRIUM OF SYSTEM (1.1)

In the following, we prove the stability of the zero equilibrium of System (1.1), using
Centre Manifold Theory.

Proposition 2.1. Consider System (1.1) where a1, b1, ba, ca, k1, are real positive
constants and az, c1, ko are real negative constants such that

1+eM coef2 (14 €M)
<l4ef — <o <m0,
C2 +e c1 R (1 oF2)

(2.1)

ekt

k}l k2
cie coe aj1a9
1 )(1 ) _ Qa2 2.2
( +1+ek1 +1+ek2 biba (2:2)

do > max{o,Al,AQ,Ag}, (2.3)

where

Ay =
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(14 €F2)2 [ cidiAefr a AT _az
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o [P (ra)r ey
8 bicoeh2 (1 — ek2) '

Ay =

Then the zero equilibrium of (1.1) is stable.

Proof. The Jacobian matrix Jy at the zero equilibrium for (1.1) is

crekl ap
— 1+ek1 by
JO as 026k2 :

ba 14-ek2

Calculating the eigenvalues of Jy, using (2.1) and (2.2) we obtain

k1 ko

c1e Co€
1+ekr 14 ke

AM=-1, X=1+ and so  |Aq] < 1.

Now, the initial system can be written as

[xn“} _ 1 {mn} N [f(mmyn)] , (2.4)

Yn+1 Yn g(:rn, yn)
where
ary ary crrefr—diz creft
f(x,y)=y+b1 T T 1temdir Ttk
asx asx Cdede?y coeh?
9(x,y) = -

T +bs by | 1t eke—day 14k
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=Tl

where T' is the matrix that diagonalizes Jy defined by

We let now

1 1
=l sl
where
F:_1)1(14’(2’“1(14’61))7 A= b1(1+6k2(1+62)) (25)
ar(1+ekr) ai(1 + ek2)
Then, (2.4) can be written as
Unt1 -1 0] |up f(un Up)
— + [\ , 2.6
|:v"+1:| |: 0 )\2:| |:vn:| |:g(unavn) ( )
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N by + Tu+ Av by 1 + ekr1—di(utv) 1+ ek
az(u+v) az(u+v) L e (Tu + Av)ek2—d2(Tutdv) oo (Ty 4 Av)ek?
by +u+v ba 1 + eh2—d2(l'utAv) 14 ek ’
9(u,v)
S a(lu+Av)  ai(T'u+ Av) n c1(u 4 v)efr—di(uto) _a(u +v)el
N by + Tu+ Av by 1 + ek1—di(utv) 1+ ek
as(u+v) - as(u+v) N co(Tu + Av)eszdz(FquAv) B co(Tu + Av)ek?
by +u+v ba 1 + eh2—d2(l'utAv) 14 ek
(2.7)
and 1
R=—.
A-T

We now let v = h(u) with h(u) = ¥(u) + O(u?), ¥(u) = nu? + 6u3, n,0 € R.
The use of this approximation is justified by Theorem 7 of [1]. Consequently, according
to Theorem 8 of [1] and using (2.6), the study of the stability of the zero equilibrium
of System (1.1) reduces to the study of the stability of the zero equilibrium of the
equation: .

Un+1 = —Un + f(un, P(un)) = G(un). (2.8)
We now need to determine 1 (the coefficient in the Taylor expansion). From (2.6),

we conclude that map h must satisfy the centre manifold equation (see [1, p. 34],
[3, p. 243], [15], [16, p. 642] and [19]):

h(—u + f(u, h(u))) — Agh(u) — §(u, h(u)) = 0.
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Keeping the terms up to u® and using (2.7), we obtain

R ( clleekl a1F3 a2 CQdQPQka )
n .

Tl @2 T B T2 (14 eke)2

From (2.8) and (2.9) we obtain G’(0) = —1 and

G"0) = k(A 7601d%62k1 n 3cld%ek1 - 12¢1dyne* B 12a; ATy n 6a, I3
reh)p " (Lach)?  (ItehE 3 0]
B &2 B 12a9m B 12¢oda AT eF2p B 602d§F362k2 302d§F3ek2
B (At (temp | 1+
(2.10)

From (2.10) and since R > 0, we deduce that if the following inequalities hold, then,
G"'(0) > 0:

B c1dy Aekt B a1 AT az cody AT ek2 (2.11)
(14 ekr)2 b3 b3 (1+eh2)? ’ )
201 A coddekz (k2 — 1)
re 0 2.12
( BT (e )70 (212)
crd?Aef (1 —ek)  2ay
- — > 0. 2.13
(14ek1)3 b3 ~ (213)

Now, from (2.3), we have that dy > A; and so from (2.9) we conclude that n < 0.
Inequality (2.11) holds, since n < 0 and from (2.3) we obtain dy > As. Moreover, from
(2.1), we obtain ¢; > 714;1’“1 and therefore from (2.5) we get I' < 0. Hence, (2.12)
holds, since from (2.3) we have ds > As. Finally, (2.13) is always true, since ¢1,as < 0
and A, k; > 0.

So, we have shown, that if the conditions in the proposition hold, then G"’(0) > 0.
Hence, for the Schwarzian derivative (see [3], and [13]), we have Sf(0) < 0. Therefore,
from Theorem 8 of [1], the zero equilibrium of (1.1) is stable. O

3. STABILITY OF ZERO EQUILIBRIUM OF SYSTEM (1.2)

In the following, we prove the stability of the zero equilibrium of System (1.2), using
Centre Manifold Theory.

Proposition 3.1. Consider System (1.2) where by, ba, c1, ca, ki1, ko are real positive
constants and a1, as are real negative constants such that

—2<%+%<0, —by <a; <0, —by<az<0. (3.1)
1 2
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Let

A — 2(12(]. —+ ekl)Q(al —+ b1)4
TV B2(ag + by) (1 — eFr)a2ek”
a3ar bt P R ek — 1)
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Ky=——"-—
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Suppose also that the following relations hold:

[A
4(a1 4+ b1)(az + ba) < alag(ekl — 1)(6k2 -1), Ai<a< A—Q,
3
and
Ki<d < K27
K3 <dy < Ky.

Then the zero equilibrium of (1.2) is stable.

¢l
(3.3)
(3.4)

Proof. Firstly, we note that 4(a; + b1)(as + ba) < ajaz(e* — 1)(ek2 — 1) implies that

A < ,/ﬁ—;. Next, we can easily see that K; < K> is true, since from (3.2), we have

c1 > A;. Moreover, using cjca < Az and ¢ < ‘2—; from (3.2), we have cjcy < Ay and

therefore K35 < K4 is true.
Now, the Jacobian matrix Jy at the zero equilibrium for (1.2) is

ar crefl
k
JO — b1k2 1+e~1 .

cae az
1+ek2 b

Calculating the eigenvalues of Jy, using (3.1) and (3.2) we obtain

M=-1, Ap=1+2y

b Z—j and so  |Aq] < 1.



On the stability of some systems of exponential difference equations

101

Now, the initial system can be written as

|:$n+1:| _ JO |:-73n:| + |:f(-73nayn):| 7 (35)
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We now let v = h(u) with h(u) = ¥(u) + O(u?), ¥(u) = nu? + u3, n,0 € R.
Using this approximation is justified by Theorem 7 of [1]. Consequently, according
to Theorem 8 of [1] and using (3.7), the study of the stability of the zero equilibrium
of System (1.2) reduces to the study of the stability of the zero equilibrium of the
equation

Upt1 = —Up + f(unﬂ#(un)) = G(uy). (3.9)
We now need to determine 1 (the coefficient in the Taylor expansion). From (3.7),
we conclude that map h must satisfy the centre manifold equation (see [1, p. 34],
[3, p. 243], [15], [16, p. 642] and [19]):
h(=u+ f(u, h(u)) = Azh(u) = §(u, h(u)) = 0.

Keeping the terms up to u® and using (3.8), we obtain

R ( c1dy e +a1F2 (@ 02d2F26k2)) (3.10)
TTron\arehe TR B2 (1+ek2)2)) '
From (3.9) and (3.10) we obtain G’(0) = —1 and
G"(0) = R( - 6cid2e?k N 3cidie 3 12¢,diner ~ 12a1Al N 6a, I3
I Oy N () e (e b
N 6& 7 12a9m B 12c9dy AT'eF2y) 7 GnggI‘Ser? n 302d%I‘3ek2
b3 b3 (1+€k2)? (Iter2)3 — (14ek2)? ) )0
(3.11)

From (3.11) and since R < 0, we deduce that if the following inequalities hold, then,
G"'(0) > 0:

(_ crdyef ~aAT | aA CngAQF(?kZ) 0 (3.12)
(14 ekr)? b3 b3 (14 ekz2)2 ’
o ey - G <0 6w
1
7201d%62k1 n crd?elr 7 2Aas <0 (3.14)

I+em)3 (A +ek)2 B

Now, from the second inequalites of (3.3) and (3.4), we obtain from (3.10) that
7 > 0. In addition, from conditions (3.1) and equation (3.6) we obtain I" < 0. Hence,
(3.12) holds, since n > 0, a1,a2,T < 0 and ¢y, ¢o,dy,ds > 0. Moreover, from the first
inequality of (3.4) and since I' < 0, we deduce that (3.13) is true. Finally, from the
first inequality of (3.3), we obtain that (3.14) is also true.

So, we have shown, that if the conditions in the proposition hold, then G"’(0) > 0.
Hence, for the Schwarzian derivative, we have Sf(0) < 0. Therefore, from Theorem 8
of [1], the zero equilibrium of (1.2) is stable. O
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4. GLOBAL BEHAVIOUR OF SOLUTIONS OF SYSTEM (1.3)

In this section, we will investigate the asymptotic behaviour of the positive solutions of
(1.3). We will use the following theorem, which is essentially a slight modification
of Theorem 1.16 of [5]. The proof of Theorem 1.16 of [5] can be easily adapted to this
case.

Theorem 4.1. Let f, g, with f : Ry xRy - Ry, g: Ry xRy — Ry be continuous
functions, where Ry = (0,00). Let a, A, b, B be positive numbers, such that a < A,
b< B and f:[a,A] x [b,B] = [a, 4], g: [a,A] x [b, B] = [b, B]. Consider the system
of difference equations

Tn41 = f(In,yn,)7 Yn+1 = g(xnvyﬁ)v n= 07 17 e (41)

Suppose that f(x,y) is a non-increasing function with respect to x and a non-decreasing
with respect to y. Moreover, suppose that g(x,y) is a non-increasing function with
respect to x and a non-increasing function with respect to y. Finally suppose that, if
m, M, r, R are real numbers such that if M = f(m,R), m = f(M,r), R = g(m,r),
r=g(M,R), then m = M and r = R. Then the system of difference equations (4.1)
has a unique positive equilibrium (Z,y) and every positive solution of System (4.1)
which satisfies xn, € [a, A], yn, € [b, B] tends to the unique equilibrium of (4.1).

We now prove the following result.

Proposition 4.2. Consider System (1.3). Suppose that the following relations hold
true:

kicp < 1, ksco < 1 (42)

and
aragks < (1 — /{?101)(1 — ]{?302). (43)

Then System (1.3) has a unique positive equilibrium and every positive solution of
System (1.3) tends to the unique equilibrium of (1.3) as n — oo.

Proof. System (1.3) can be written as Zn+1 = f(Zn,Yn), Yn+t1 = 9(Tn,yn), where

y2 edlfk‘lm
f(xay) = a1 bl +y +cll+ed17k1m (44)
and
ebz—kgaﬁ ed2—k3y
g(x’ y> = a2 1 + eb2—kaw +c2 1 + ed2—ksy ’ (45)

We can now easily see that f(z,y) is non-increasing in = and non-decreasing in y,
while g(x,y) is non-increasing in 2 and non-increasing in y.
We now show that f : [a, A] X [b, B] — [a, A] and ¢ : [a, A] x [b, B] — [b, B], where

2

B: A: _—
as + ca, a1b1+B

+C1,
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bszzA ed27k33 b2 edlfktlA
and a=ay + 1
bitb T edmA

Indeed, from (4.5), we can easily obtain that g(x,y) < as + ¢ = B. Now, for y < B,

1+ eb2—k2A te2 1+ ed2—ksB

from (4.4), we get f(z,y) < al% + ¢ = A. Moreover, for x < A and y < B from
(4.5), we obtain

ebz —ko A €d2 —ksB ;

g(x, y) 2 az 1 + eb2—k24 + 2 1+ ed2—ksB

Finally, taking z < A, y > b from (4.4), we conclude that

b2 6d1 —k1A

f(x,y)2a1b1+b+cll+edl_k1A =a.

Now, let m, M, r, R be positive real numbers such that M = f(m, R), m = f(M,r),
R = g(m,r) and r = g(M, R). Therefore, we obtain M —m = f(m, R) — f(M,r) and
R—1r=g(m,r) —g(M, R). So, we can write

M —m = f(m,R) — f(M,R) + f(M,R) — f(M,r)

and
R—r=g(m,r)—gM,r)+g(M,r) — g(M,R).

Using the Mean Value Theorem, we obtain
M —m = fo(1, R)(m — M) + f, (M, &)(R —7)

and
R—1r=g.(&,r)(m — M)+ g,(M,&)(r — R)

for some &1,&3 € (m, M) and &, &4 € (r, R). Therefore, we can write
|M —m| < |fo(&1, R)|[m — M| + | f, (M, &)[| R — 7| (4.6)

and
IR — 1| < |g2(&s57)|lm — M|+ [gy (M, &)||r — R (4.7)

However, we have

7clk16d1*k1§1 2blf2 +€§

R)= ———— M =a15— 5 4.8

fz(61, R) (1 + edl—k1€1)2’ fy( §2) = a (b1 +€2)2 ) (4.8)
—agkoeb2 k285 —Cokged2—Fksls

9u(&3,7) = m7 gy(M, &) = m- (4.9)

From (4.6), (4.7), (4.8), (4.9), we obtain

|M —m|(1 —kier) <ar|R—7|, |R—7r[(1—ksca) < agka|M —ml. (4.10)
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Therefore, from (4.10), we conclude that

alagk‘g
(1 — klcl)(l — kgCg)

Hence, from (4.3), (4.10) and (4.11), we obtain

|[M —m]| < |M — m). (4.11)

M=m, R=r.

Let now (zn,y») be an arbitrary solution of (1.3). From the discussion above, it is
obvious that y; < B. Then we can see that x5 < A. In addition, we also have y, < B
and so we can get y3 > b. Finally, since we also have x3 < A, we obtain x4 > a. Hence,
we have shown that z,, € [a, 4], y, € [b, B], for all n > 4.

Therefore, from Theorem 4.1, System (1.3) has a unique positive equilibrium (Z, 7)
and every positive solution of System (1.3) tends to the unique positive equilibrium as
n — o0o. This completes the proof of the proposition. O

Proposition 4.3. Consider System (1.3), where the conditions in Proposition 4.2
hold. In addition, suppose that the following relation holds true:

kikscico + koaras < 1. (412)

Then the unique positive equilibrium (Z,q) of System (1.3) is globally asymptotically
stable.

Proof. First, we will prove that (Z,7) is locally asymptotically stable. The linearised
system of (1.3) is

wn-{—l:Awna A:[a B:la wnzlixn]-

vy 6 Yn
where .
o= _ Clkledl_klz ﬁ _ al(g2 + leg)
(T + et R ORI
. G,ng@bzikz‘% 5= 02k36d27k3g
T T Wy ebeRaa)2 0T T 1 edahan)2”

The characteristic equation of A is A2 — (a+8)A+ad — By = 0. From relation (4.12), we
obtain ad — By < 1. Moreover, form (4.2), we obtain |a+ 0| < 1+ ad — B~. Therefore,
from Theorem 1.3.4 of [13], we deduce that (,§) is locally asymptotically stable.
Using Proposition 4.2, we conclude that (Z,7) is globally asymptotically stable. This
completes the proof of the proposition. O

5. GLOBAL BEHAVIOUR OF SOLUTIONS OF SYSTEM (1.4)

In this section, we will investigate the asymptotic behaviour of the positive solutions of
(1.4). We will use the following theorem, which is essentially a slight modification
of Theorem 1.16 of [5]. The proof of Theorem 1.16 of [5] can be easily adapted to this
case.
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Theorem 5.1. Let f, g, with f : Ry xRy - R4, g: Ry xRy — Ry be continuous
functions, where Ry = (0,00). Let a, A, b, B be positive numbers, such that a < A,
b< B and f:[a,A] x [b,B] = [a, 4], g: [a,A] x [b, B] = [b, B]. Consider the system

of difference equations

Tn+1 :f(xmyn)v Yn+1 :g(xmyn)7 n=0,1,... (5'1)

Suppose that f(x,y) is a non-increasing function with respect to x and a non-decreasing
with respect to y. Moreover, suppose that g(x,y) is a non-decreasing function with
respect to x and a non-increasing function with respect to y. Finally suppose that, if
m, M, r, R are real numbers such that if m = f(M,r), M = f(m,R), r = g(m, R),
R=g(M,r), then m = M and r = R. Then the system of difference equations (5.1)
has a unique positive equilibrium (Z,y) and every positive solution of system (5.1)
which satisfies xyn, € [a, A], yn, € [b, B] tends to the unique equilibrium of (5.1).

We now prove the following result.

Proposition 5.2. Consider system (1.4). Suppose that the following relations hold
true:

kici < 1, koco < 1, a,ax<1 (52)

and
a1az < (1 — klcl)(l — szQ). (53)

Then System (1.4) has a unique positive equilibrium and every positive solution of the
System (1.4) tends to the unique equilibrium of (1.4) as n — oo.

Proof. System (1.4) can be written as x,4+1 = f(Tn,Yn), Yn+1 = 9(Tn, Yn), where

y2 ed1—k)1$
f(x7y) = a1 bl Y +a 1+ edi—kix (54)
and ) -
T e®2—k2y
9(x,y) = as (5.5)

by +x e + ed2—kay”

We can now easily see that f(z,y) is non-increasing in = and non-decreasing in y,
while g(x,y) is non-decreasing in = and non-increasing in y.
We now show that f : [a, A] x [b, B] — [a, A] and g : [a, A] x [b, B] — [b, B], where

ajce +c1 azcy + C2
A=02T4  y p_ 22072, ,
1-— a1 as 1-— a1as
ed1—/€1A 4 edz—kgB
a=¢———— an =g
1+ edl_klA 1+ edz—k)gB

for some 0 € (0,00). If y < B, from (5.4), we have

a1 + C2

flz,y) <ary+c Sal(
1—a1a2

—|—9)—|—61§A.
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Next, if © < A, from (5.5), we get

aica + 1

+@+@§B
1-— aija9

g(z,y) < az(

Moreover, if x < A, from (5.4), we obtain

edlfk‘lA
flz,y) > T o A = O

Finally, for y < B, from (5.5) we obtain

edg*k}zB
g(x,y) > sz =

In addition, working in the same way as in the proof of Proposition 4.2, we can show
that there exist real numbers m, M, r, R such that if m = f(M,r), M = f(m, R),
r=g(m,R), R=g(M,r), then m = M and r = R.

Moreover, from (1.4), we can see that x,11 < a1yn + €1, Ynt1 < a2y, + Co.
So, we get xpyo < a1a2%y, + G162 + €1y Ynto < A1G2Yn + a2cy + co. We now let
Wpto = G102Wy, + @162 + €1 and zp42 = @102z, + a2c1 + co with xg = wo, Yo = 20,
x1 = wi and y; = z1. These two equations are essentially linear difference equations
of first order, so solvable ones (many recent equations and systems are solved by using
the equation such as [25-27,29,33]). Solving these equations, we obtain

n n aijco + ¢
wy, = Ai(a1a2)? + Ax(—1)"(a1a2)? + %
— a1as
and L
n n ascC C
Zp = Bl(alag)f + Bg(—l)n((llaz)f + M,
1 — aias

respectively, where Ay, Ay, By, B depend on the initial conditions. Now, since x¢ = wy,
Yo = 29, T1 = W1, Y1 = 21, working inductively, we obtain that =, < wy, yn < zn,
n € N, and therefore we conclude that for some ng € N* and 6 € (0,00), we have
T, < % 4+ 60 =Aand y, < % + 60 = B, n > ng. Hence, we can easily see
that x,, > a, n > ng and y,, > b, n > ng. So, we have obtained that z,, € [a, A] and
Yn € [b, B], n > ny.

Therefore, using Theorem 5.1, we deduce that System (1.4) has a unique positive
equilibrium (Z, §), and every positive solution of System (1.4) tends to the unique
positive equilibrium as n — co. This completes the proof of the proposition. O

Proposition 5.3. Consider System (1.4). If the conditions in Proposition 5.2 hold,
then the unique positive equilibrium (Z,7) of System (1.4) is globally asymptotically
stable.

Proof. Firstly, we will prove that (Z,§) is locally asymptotically stable. The linearised
system of (1.4) is

w’I’LJrl = Aw’l’H A = |:?y[ §:| 9 Wp = |:z":| )
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where )
o= Clkledliklm _ al(g2 + 2b1g)
(14 eh—kia)2’ (b1 +9)% 7
. CLQ(i‘Q + 2b2.ﬁf) 5= 02k26d27k27§
L N

The characteristic equation of A is A2 — (a + d)A + ad — By = 0. Therefore, from
relation (5.2), we obtain ad — By < 1 and from (5.3), we obtain |+ | < 1+ ad — 3.
Therefore, from Theorem 1.3.4 of [13], we deduce that (Z, ) is locally asymptotically
stable. Using Proposition 5.2, we conclude that (Z, ) is globally asymptotically stable.
This completes the proof of the proposition. O

6. GLOBAL BEHAVIOUR OF SOLUTIONS OF SYSTEM (1.5)

In this section, we will investigate the asymptotic behaviour of the positive solutions of
(1.5). We will use the following theorem, which is essentially a slight modification
of Theorem 1.16 of [5]. The proof of Theorem 1.16 of [5] can be easily adapted to this
case.

Theorem 6.1. Let f, g, with f : Ry xRy - R4, g: Ry xRy — Ry be continuous
functions, where Ry = (0,00). Let a, A, b, B be positive numbers, such that a < A,
b< B and f:[a,A] x [b,B] = [a, 4], g: [a,A] x [b, B] = [b, B]. Consider the system
of difference equations

Tn+1 :f(xnayn)7 Yn+1 :g(xmyn)» n=0,1,... (6'1)

Suppose that f(x,y) is a non-decreasing function with respect to x and a non-increasing
with respect to y. Moreover, suppose that g(x,y) is a non-increasing function with
respect to x and a non-increasing function with respect to y. Finally suppose that, if
m, M, r, R are real numbers such that if M = f(M,r), m = f(m,R), R = g(m,r),
r=g(M,R), then m = M and r = R. Then the system of difference equations (6.1)
has a unique positive equilibrium (T,y) and every positive solution of system (6.1)
which satisfies xy, € [a, A], yn, € [b, B] tends to the unique equilibrium of (6.1).

We now prove the following result.

Proposition 6.2. Consider System (1.5). Suppose that the following relations hold
true:

ksco < 1, a1 <1 (62)

and
kicragks < (1 — kgCQ)(l — al). (63)

Then System (1.5) has a unique positive equilibrium and every positive solution of
System (1.5) tends to the unique equilibrium of (1.5) as n — oo.
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Proof. System (1.5) can be written as Zp41 = f(Zn, Yn), Ynt1 = 9(Tn, Yn), where

.232 edl—k,ly
f(aj?y) = a1 bl T +c 1+ ed1—kiy (64)
and
ebg—kz(ﬂ ed2—k3y
9(@,y) = e Ty (6.5)

We can now easily see that f(z,y) is non-decreasing in « and non-increasing in y,
while g(x,y) is non-increasing in 2 and non-increasing in y.

We now show that f : [a, A] % [b, B] — [a, 4] and ¢ : [a, A] x [b, B] — [b, B], where

A= —+ 9, B = az + C2,
1-— ay
edi—k1 B o ha—kaA ed2—ksB
=T e ke A O kA T2 kB

for some 0 € (0,00). If z < A, then from (6.4) we get

flz,y) Samz+ca §a1(1 a +9) +c <A
1
Now, from (6.5), we can easily see that g(z,y) < ags+co = B. So, if y < B, from (6.4),

we obtain
ed1—k1 B

[z, y) > C1m

Finally, if x < A and y < B, from (6.5) we obtain

= a.

eb2—k2 A od2—ksB

g(x,y) > a21 T obahaA +021  oda=ksB =b.

In addition, working in the same way as in the proof of Proposition 4.2, we can show
that there exist real numbers m, M, r, R such that ift M = f(M,r), m = f(m, R),
R =g(m,r), r=g(M,R), then m = M and r = R.

Moreover, we have x,+1 < a12, + ¢1, n € N. We consider the difference equation
Zp41 = Q12 +C1, n eN and we let z, be the solution such that zy = zg. Then, we
have z, = (g — - = Jai + = al’ n € N. Now, since zg = xg, and working inductively,
we can show that z, < z,, n € N. Therefore since a; € (0,1), we get that for some
0 € (0,00) and ng € N*, we have z,, < = A, n > ng. Finally, we can also
easily see that x,, > a, n > 2, and vy, < B, n > 1, and y, > b, n > ng. Hence, we have
obtained that x,, € [a, Al and Yn € [b, B], n > ng.

Therefore, using Theorem 6.1, System (1.5) has a unique positive equilibrium (Z, 3),
and every positive solution of System (1.5) tends to the unique positive equilibrium as
n — o0o. This completes the proof of the proposition. O

Proposition 6.3. Consider System (1.5). If the conditions in Proposition 6.2 hold,
then the unique positive equilibrium (Z,7) of System (1.5) is globally asymptotically
stable.
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Proof. Firstly, we will prove that (Z,§) is locally asymptotically stable. The linearised
system of (1.5) is

Wn+1 = Aw,, A= |:04 B:| ,  Wp = |:xn:| »

v 9 Yn
where
a1(§c2 + 21)153) Cﬂﬁ@dl_klg
R (A N (T
agkqeb2 k2T Ccokze®2HaT
N N

The characteristic equation of A is A2 — (a+ &)\ +ad — By = 0. Now, ad — By < 0 < 1.
Moreover, from relation (6.3) we obtain |a + §| < 1 + ad — 7. Therefore, from
Theorem 1.3.4 of [13], we deduce that (Z,§) is locally asymptotically stable. Using
Proposition 6.2, we conclude that (Z,7) is globally asymptotically stable. This com-
pletes the proof of the proposition. O

7. GLOBAL BEHAVIOUR OF SOLUTIONS OF SYSTEM (1.6)

In this section, we will investigate the asymptotic behaviour of the positive solutions
of (1.6). We will use the following theorem, which is essentially a slight modification
of Theorem 1.16 of [5]. The proof of Theorem 1.16 of [5] can be easily adapted to this
case.

Theorem 7.1. Let f, g, with f : Ry xRy - R4, g: Ry xRy — Ry be continuous
functions, where Ry = (0,00). Let a, A, b, B be positive numbers, such that a < A,
b< B and f:[a,A] x [b,B] = [a, 4], g [a,A] x [b, B] = [b, B]. Consider the system
of difference equations

Tn+1 :f(xnayn)7 Yn+1 :g(xnvyn)v n=0,1,... (7'1)

Suppose that f(x,y) is a non-decreasing function with respect to x and a non-increasing
with respect to y. Moreover, suppose that g(x,y) is a non-increasing function with
respect to x and a non-decreasing function with respect to y. Finally suppose that, if
m, M, r, R are real numbers such that if M = f(M,r), m = f(m,R), R = g(m, R),
r=g(M,r), then m = M and r = R. Then the system of difference equations (7.1)
has a unique positive equilibrium (Z,y) and every positive solution of System (7.1)
which satisfies x,, € [a, A], yn, € [b, B] tends to the unique equilibrium of (7.1).

We now prove the following result.

Proposition 7.2. Consider System (1.6). Suppose that the following relations hold
true:
ay, a0 <1 (72)

and
creokiko < (1 — al)(l — 0,2). (73)
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Then System (1.6) has a unique positive equilibrium and every positive solution of
System (1.6) tends to the unique equilibrium of (1.6) as n — oo.

Proof. System (1.6) can be written as Zp41 = f(Zn,Yn),  Yn+t1 = 9(Tn, Yn), Where

£E2 edlfkly
flzy) =a btz Ty T edi—kiy (7.4)
and
y2 edg—sz
g(l‘,y) :a2b2+y +C21+ed2—kgz' (75)

We can now easily see that f(z,y) is non-decreasing in « and non-increasing in y,
while g(x,y) is non-increasing in = and non-decreasing in y.
We now show that f : [a, A] x [b, B] = [a, A] and g : [a, A] x [b, B] — [b, B], where

edlfle edz*sz

+ 0, a20171+ed1—k13 and b26271+ed2—k214

C1 C2
A .

_1—a1

0, B=
+, 1—(12

for some 0 € (0,00). If z < A, from (7.4) we have

C1

f(%:y)éal( +9>+61§A

1-— ay
and if y < B, from (7.5) we obtain

C2

g(x,y)éaz(l +9)+02§B.

“ay
Moreover, for y < B, from (7.4) we get

odi—k1B
f(z,y) > AT dimB ¢
and for z < A, from (7.5) we obtain

ed2—k2 A
g(z,y) > CQW =b.

In addition, working in the same way as in the proof of Proposition 4.2, we can show
that there exist real numbers m, M, r, R such that if M = f(M,r), m = f(m, R),
R=g(m,R),r =g(M,r), then m = M and r = R.

Moreover, we have x,+1 < a12, + ¢1, n € N. We consider the difference equation
Zn+1 = G12n + ¢1, n € N and we let z, be the solution such that zg = x¢. Then, we

have
C1

c
z":(xof )a’erl 1@, n € N.
—ay

1— ai
Now, since zy = x(, and working inductively, we can show that z,, < z,, n € N.
Therefore, since a; € (0,1) we get that for some 6 € (0,00) and ng € N*, we have

T, < A= 121(11 + 0, n > ng. In the same way, we can prove that for some 6 € (0, 00)
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and ng € NT, we have y, < B = 122112 + 60, n > ng. So, we can now easily see that
ZTp > a, n > ng, and y, > b, n > ng. Hence, we have obtained that x,, € [a, A] and
Yn € [b, B], n > ny.

Therefore, using Theorem 7.1, System (1.6) has a unique positive equilibrium (Z, 3),
and every positive solution of System (1.6) tends to the unique positive equilibrium as

n — o0o. This completes the proof of the proposition. O

Proposition 7.3. Consider System (1.6). If the conditions in Proposition 7.2 hold,
then the unique positive equilibrium (Z,3) of System (1.6) is globally asymptotically
stable.

Proof. First, we will prove that (Z,7) is locally asymptotically stable. The linearised
system of (1.6) is

wn+1:Awn, A:|:a g:lv wn:|:xn:|a

Y Yn
where ~
a1(532 + 21)153) 3 Cﬂﬁedl_kly
o= = -
(b1 +2)2 7 (14 ehr—k15)2’
. 02k2ed2—k2£ 5= GQ(QQ + 2[)2@)
T T e O T T (b4 )

The characteristic equation of A is A% — (a + 6)A + ad — By = 0. Now, from
(7.2), we obtain that ad — v < ad < 1. Moreover, from relation (7.3) we obtain
oo+ 6| < 1+ ad — By. Therefore, from Theorem 1.3.4 of [13], we deduce that (Z,7) is
locally asymptotically stable. Using Proposition 7.2, we conclude that (Z, §) is globally
asymptotically stable. This completes the proof of the proposition. O
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