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Abstract. In this paper we prove the stability of the zero equilibria of two systems of
difference equations of exponential type, which are some extensions of an one-dimensional
biological model. The stability of these systems is investigated in the special case when one
of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1,
using centre manifold theory. In addition, we study the existence and uniqueness of positive
equilibria, the attractivity and the global asymptotic stability of these equilibria of some
related systems of difference equations.
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1. INTRODUCTION

Difference equations and systems of difference equations containing exponential terms
have numerous potential applications in biology. A large number of papers dealing
with such or related equations have been published (see, e.g, [6, 16, 22–24]). In [34],
the following model incorporating litter inhibition is discussed:

Bt+1 = cN
ea−bLt

1 + ea−bLt
, Lt+1 = L2

t

Lt + d
+ ckN

ea−bLt

1 + ea−bLt
,

where B is the living biomass, L the litter mass, N the total soil nitrogen, t the time
(measured in years) and constants a, b, c, d > 0 and 0 < k < 1. In this model, the living
biomass (B) is reduced below its equilibrium, by litter. Litter decay is determined by d,
while litter production is k times the living biomass. The complexity of the grassland
ecosystem makes its study interesting but complicated. In addition, in [18], the authors
studied the boundedness and the persistence of the positive solutions, the existence,
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the attractivity and the global asymptotic stability of the unique positive equilibrium,
as well as the existence of periodic solutions of the following equation:

xn+1 = a
x2
n

b+ xn
+ c

ek−dxn

1 + ek−dxn
,

where a ∈ (0, 1), a, b, c, d, k are positive constants and x0 is a positive real number.
Motivated by this discrete time model and recent studies of symmetric and close

to symmetric systems of difference equations (see, e.g, [9, 11, 19, 25, 26]), in this paper,
we will study the stability of the zero equilibria of the following systems:

xn+1 = a1
yn

b1 + yn
+ c1

xne
k1−d1xn

1 + ek1−d1xn
, yn+1 = a2

xn
b2 + xn

+ c2
yne

k2−d2yn

1 + ek2−d2yn
(1.1)

and

xn+1 = a1
xn

b1 + xn
+ c1

yne
k1−d1yn

1 + ek1−d1yn
, yn+1 = a2

yn
b2 + yn

+ c2
xne

k2−d2xn

1 + ek2−d2xn
, (1.2)

where a1, a2, b1, b2, c1, c2, d1, d2, k1, k2, are real constants and the initial values x0
and y0 are real numbers.

In addition, we will investigate the asymptotic behaviour of the positive solutions
of the following systems of difference equations:

xn+1 = a1
yn

2

b1 + yn
+ c1

ed1−k1xn

1 + ed1−k1xn
, yn+1 = a2

eb2−k2xn

1 + eb2−k2xn
+ c2

ed2−k3yn

1 + ed2−k3yn
,

(1.3)

xn+1 = a1
yn

2

b1 + yn
+ c1

ed1−k1xn

1 + ed1−k1xn
, yn+1 = a2

xn
2

b2 + xn
+ c2

ed2−k2yn

1 + ed2−k2yn
, (1.4)

xn+1 = a1
xn

2

b1 + xn
+ c1

ed1−k1yn

1 + ed1−k1yn
, yn+1 = a2

eb2−k2xn

1 + eb2−k2xn
+ c2

ed2−k3yn

1 + ed2−k3yn
,

(1.5)

xn+1 = a1
xn

2

b1 + xn
+ c1

ed1−k1yn

1 + ed1−k1yn
, yn+1 = a2

yn
2

b2 + yn
+ c2

ed2−k2xn

1 + ed2−k2xn
, (1.6)

where a1, a2, b1, b2, c1, c2, d1, d2, k1, k2, k3 are positive constants and the initial
values x0 and y0 are positive.

The results of this paper could be used to create more elaborate biological models
to facilitate understanding the underlying ecological mechanisms. The results obtained
for the systems (1.1) and (1.2) provide conditions for stability of the zero equilibria
of those systems. Those equilibria correspond to the physical situation where both
quantities (x and y) vanish.

The asymptotic behaviour of positive solutions of scalar equations related to the
previous systems is studied in [22]. For some related cyclic systems of difference
equations see [9, 28,31] and [32], as well as some three-dimensional systems (see, e.g.,
[19,27,33]). Finally we note that, since difference equations have several applications in
applied sciences, there exists a rich bibliography concerning theory and applications of
difference equations (see [1–34]).



On the stability of some systems of exponential difference equations 97

2. STABILITY OF ZERO EQUILIBRIUM OF SYSTEM (1.1)

In the following, we prove the stability of the zero equilibrium of System (1.1), using
Centre Manifold Theory.
Proposition 2.1. Consider System (1.1) where a1, b1, b2, c2, k1, are real positive
constants and a2, c1, k2 are real negative constants such that

c2 < 1 + e−k2 , −1 + ek1

ek1
< c1 < −

c2e
k2(1 + ek1)

ek1(1 + ek2) , (2.1)

(
1 + c1e

k1

1 + ek1

)(
1 + c2e

k2

1 + ek2

)
= a1a2
b1b2

, (2.2)

d2 > max
{

0, A1, A2, A3

}
, (2.3)

where

A1 = (1 + ek2)2

c2Γ2ek2

(
c1d1Γek1

(1 + ek1)2 + a1Γ3

b21
− a2
b22

)
,

A2 = (1 + ek2)2

c2Γ∆ek2

(
c1d1∆ek1

(1 + ek1)2 + a1∆2Γ
b21

− a2
b22

)
,

A3 =

√
2(1 + ek2(1 + c2))(1 + ek2)2

b21c2e
k2(1− ek2) .

Then the zero equilibrium of (1.1) is stable.
Proof. The Jacobian matrix J0 at the zero equilibrium for (1.1) is

J0 =
[
c1e

k1

1+ek1
a1
b1

a2
b2

c2e
k2

1+ek2

]
.

Calculating the eigenvalues of J0, using (2.1) and (2.2) we obtain

λ1 = −1, λ2 = 1 + c1e
k1

1 + ek1
+ c2e

k2

1 + ek2
and so |λ2| < 1.

Now, the initial system can be written as
[
xn+1
yn+1

]
= J0

[
xn
yn

]
+
[
f(xn, yn)
g(xn, yn)

]
, (2.4)

where

f(x, y) = a1y

y + b1
− a1y

b1
+ c1xe

k1−d1x

1 + ek1−d1x
− c1e

k1

1 + ek1
x,

g(x, y) = a2x

x+ b2
− a2x

b2
+ c2ye

k2−d2y

1 + ek2−d2y
− c2e

k2

1 + ek2
y.
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We let now [
xn
yn

]
= T

[
un
vn

]
,

where T is the matrix that diagonalizes J0 defined by

T =
[

1 1
Γ ∆

]
,

where
Γ = −b1(1 + ek1(1 + c1))

a1(1 + ek1) , ∆ = b1(1 + ek2(1 + c2))
a1(1 + ek2) . (2.5)

Then, (2.4) can be written as
[
un+1
vn+1

]
=
[
−1 0
0 λ2

] [
un
vn

]
+
[
f̂(un, vn)
ĝ(un, vn)

]
, (2.6)

where
f̂(u, v)

= R

(
∆
(
a1(Γu+ ∆v)
b1 + Γu+ ∆v −

a1(Γu+ ∆v)
b1

+ c1(u+ v)ek1−d1(u+v)

1 + ek1−d1(u+v) − c1(u+ v)ek1

1 + ek1

)

−
(
a2(u+ v)
b2 + u+ v

− a2(u+ v)
b2

+ c2(Γu+ ∆v)ek2−d2(Γu+∆v)

1 + ek2−d2(Γu+∆v) − c2(Γu+ ∆v)ek2

1 + ek2

))
,

ĝ(u, v)

= R

(
−Γ
(
a1(Γu+ ∆v)
b1 + Γu+ ∆v −

a1(Γu+ ∆v)
b1

+ c1(u+ v)ek1−d1(u+v)

1 + ek1−d1(u+v) − c1(u+ v)ek1

1 + ek1

)

+ a2(u+ v)
b2 + u+ v

− a2(u+ v)
b2

+ c2(Γu+ ∆v)ek2−d2(Γu+∆v)

1 + ek2−d2(Γu+∆v) − c2(Γu+ ∆v)ek2

1 + ek2

)

(2.7)

and
R = 1

∆− Γ .

We now let v = h(u) with h(u) = ψ(u) + O(u4), ψ(u) = ηu2 + θu3, η, θ ∈ R.
The use of this approximation is justified by Theorem 7 of [1]. Consequently, according
to Theorem 8 of [1] and using (2.6), the study of the stability of the zero equilibrium
of System (1.1) reduces to the study of the stability of the zero equilibrium of the
equation:

un+1 = −un + f̂(un, ψ(un)) = G(un). (2.8)
We now need to determine η (the coefficient in the Taylor expansion). From (2.6),
we conclude that map h must satisfy the centre manifold equation (see [1, p. 34],
[3, p. 243], [15], [16, p. 642] and [19]):

h(−u+ f̂(u, h(u)))− λ2h(u)− ĝ(u, h(u)) = 0.
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Keeping the terms up to u3 and using (2.7), we obtain

η = R

1− λ2

(
c1d1Γek1

(1 + ek1)2 + a1Γ3

b21
− a2
b22
− c2d2Γ2ek2

(1 + ek2)2

)
. (2.9)

From (2.8) and (2.9) we obtain G′(0) = −1 and

G′′′(0) = R

(
∆
(
− 6c1d2

1e
2k1

(1 + ek1)3 + 3c1d2
1e
k1

(1 + ek1)2 −
12c1d1ηe

k1

(1 + ek1)2 −
12a1∆Γη

b21
+ 6a1Γ3

b31

)

−
(

6a2
b32
− 12a2η

b22
− 12c2d2∆Γek2η

(1 + ek2)2 − 6c2d2
2Γ3e2k2

(1 + ek2)3 + 3c2d2
2Γ3ek2

(1 + ek2)2

))
.

(2.10)

From (2.10) and since R > 0, we deduce that if the following inequalities hold, then,
G′′′(0) > 0:

η

(
− c1d1∆ek1

(1 + ek1)2 −
a1∆2Γ
b21

+ a2
b22

+ c2d2∆Γek2

(1 + ek2)2

)
> 0, (2.11)

Γ3
(

2a1∆
b31

+ c2d
2
2e
k2(ek2 − 1)

(1 + ek2)3

)
> 0, (2.12)

c1d
2
1∆ek1(1− ek1)
(1 + ek1)3 − 2a2

b32
> 0. (2.13)

Now, from (2.3), we have that d2 > A1 and so from (2.9) we conclude that η < 0.
Inequality (2.11) holds, since η < 0 and from (2.3) we obtain d2 > A2. Moreover, from
(2.1), we obtain c1 > − 1+ek1

ek1 and therefore from (2.5) we get Γ < 0. Hence, (2.12)
holds, since from (2.3) we have d2 > A3. Finally, (2.13) is always true, since c1, a2 < 0
and ∆, k1 > 0.

So, we have shown, that if the conditions in the proposition hold, then G′′′(0) > 0.
Hence, for the Schwarzian derivative (see [3], and [13]), we have Sf(0) < 0. Therefore,
from Theorem 8 of [1], the zero equilibrium of (1.1) is stable.

3. STABILITY OF ZERO EQUILIBRIUM OF SYSTEM (1.2)

In the following, we prove the stability of the zero equilibrium of System (1.2), using
Centre Manifold Theory.

Proposition 3.1. Consider System (1.2) where b1, b2, c1, c2, k1, k2 are real positive
constants and a1, a2 are real negative constants such that

−2 < a1
b1

+ a2
b2

< 0, −b1 < a1 < 0, −b2 < a2 < 0. (3.1)
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Let

A1 =

√
2a2(1 + ek1)2(a1 + b1)4

b22(a2 + b2)(1− ek1)a2
1e

2k1
,

A2 = a2
2(a1 + b1)4(1 + ek1)3(1 + ek2)(ek2 − 1)

−2a1b1b32e
3k1ek2(a2 + b2) ,

A3 =
(

1 + a1
b1

)(
1 + a2

b2

)
(1 + ek1)(1 + ek2)

ek1+k2
,

K1 = 1 + ek1

b2

√
2a2

(a2 + b2)(1− ek1) ,

K2 = − a1c1e
k1

(a1 + b1)2 ,

K3 =

√
−2a1(1 + ek2)3(1 + ek1)(a2 + b2)

b2c1c2b31e
k1ek2(ek2 − 1) ,

K4 = − (a1 + b1)2a2(1 + ek1)2(1 + ek2)2

b21b
2
2c

2
1c2e

2k1ek2
.

Suppose also that the following relations hold:

4(a1 + b1)(a2 + b2) < a1a2(ek1 − 1)(ek2 − 1), A1 < c1 <

√
A2
A3

, c2 ≤
A3
c1

(3.2)

and
K1 < d1 < K2, (3.3)

K3 < d2 < K4. (3.4)

Then the zero equilibrium of (1.2) is stable.

Proof. Firstly, we note that 4(a1 + b1)(a2 + b2) < a1a2(ek1 − 1)(ek2 − 1) implies that
A1 <

√
A2
A3

. Next, we can easily see that K1 < K2 is true, since from (3.2), we have
c1 > A1. Moreover, using c1c2 < A3 and c21 < A2

A3
from (3.2), we have c31c2 < A2 and

therefore K3 < K4 is true.
Now, the Jacobian matrix J0 at the zero equilibrium for (1.2) is

J0 =
[

a1
b1

c1e
k1

1+ek1
c2e

k2

1+ek2
a2
b2

]
.

Calculating the eigenvalues of J0, using (3.1) and (3.2) we obtain

λ1 = −1, λ2 = 1 + a1
b1

+ a2
b2

and so |λ2| < 1.
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Now, the initial system can be written as
[
xn+1
yn+1

]
= J0

[
xn
yn

]
+
[
f(xn, yn)
g(xn, yn)

]
, (3.5)

where
f(x, y) = a1x

x+ b1
− a1x

b1
+ c1ye

k1−d1y

1 + ek1−d1y
− c1e

k1

1 + ek1
y,

g(x, y) = a2y

y + b2
− a2y

b2
+ c2xe

k2−d2x

1 + ek2−d2x
− c2e

k2

1 + ek2
x.

We let now [
xn
yn

]
= T

[
un
vn

]
,

where T is the matrix that diagonalizes J0 defined by

T =
[
Γ ∆
1 1

]
,

where
Γ = − b1c1e

k1

(b1 + a1)(1 + ek1) , ∆ = b2c1e
k1

(a2 + b2)(1 + ek1) . (3.6)

Then, (3.5) can be written as
[
un+1
vn+1

]
=
[
−1 0
0 λ2

] [
un
vn

]
+
[
f̂(un, vn)
ĝ(un, vn)

]
, (3.7)

where

f̂(u, v)

= R

(
a1(Γu+ ∆v)
b1 + Γu+ ∆v −

a1(Γu+ ∆v)
b1

+ c1(u+ v)ek1−d1(u+v)

1 + ek1−d1(u+v) − c1(u+ v)ek1

1 + ek1

−∆
(
a2(u+ v)
b2 + u+ v

− a2(u+ v)
b2

+ c2(Γu+ ∆v)ek2−d2(Γu+∆v)

1 + ek2−d2(Γu+∆v) − c2(Γu+ ∆v)ek2

1 + ek2

))
,

ĝ(u, v)

= −R
(
a1(Γu+ ∆v)
b1 + Γu+ ∆v −

a1(Γu+ ∆v)
b1

+ c1(u+ v)ek1−d1(u+v)

1 + ek1−d1(u+v) − c1(u+ v)ek1

1 + ek1

− Γ
(
a2(u+ v)
b2 + u+ v

− a2(u+ v)
b2

+ c2(Γu+ ∆v)ek2−d2(Γu+∆v)

1 + ek2−d2(Γu+∆v) − c2(Γu+ ∆v)ek2

1 + ek2

))

(3.8)
and

R = 1
Γ−∆ .
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We now let v = h(u) with h(u) = ψ(u) + O(u4), ψ(u) = ηu2 + θu3, η, θ ∈ R.
Using this approximation is justified by Theorem 7 of [1]. Consequently, according
to Theorem 8 of [1] and using (3.7), the study of the stability of the zero equilibrium
of System (1.2) reduces to the study of the stability of the zero equilibrium of the
equation

un+1 = −un + f̂(un, ψ(un)) = G(un). (3.9)

We now need to determine η (the coefficient in the Taylor expansion). From (3.7),
we conclude that map h must satisfy the centre manifold equation (see [1, p. 34],
[3, p. 243], [15], [16, p. 642] and [19]):

h(−u+ f̂(u, h(u)))− λ2h(u)− ĝ(u, h(u)) = 0.

Keeping the terms up to u3 and using (3.8), we obtain

η = R

1− λ2

( c1d1e
k1

(1 + ek1)2 + a1Γ2

b21
− Γ

(a2
b22

+ c2d2Γ2ek2

(1 + ek2)2

))
. (3.10)

From (3.9) and (3.10) we obtain G′(0) = −1 and

G′′′(0) = R

(
− 6c1d2

1e
2k1

(1 + ek1)3 + 3c1d2
1e
k1

(1 + ek1)2 −
12c1d1ηe

k1

(1 + ek1)2 −
12a1∆Γη

b21
+ 6a1Γ3

b31

−∆
(

6a2
b32
− 12a2η

b22
− 12c2d2∆Γek2η

(1 + ek2)2 − 6c2d2
2Γ3e2k2

(1 + ek2)3 + 3c2d2
2Γ3ek2

(1 + ek2)2

))
.

(3.11)

From (3.11) and since R < 0, we deduce that if the following inequalities hold, then,
G′′′(0) > 0:

η

(
− c1d1e

k1

(1 + ek1)2 −
a1∆Γ
b21

+ a2∆
b22

+ c2d2∆2Γek2

(1 + ek2)2

)
< 0, (3.12)

Γ3
(

2a1
b31

+ 2c2d2
2∆e2k2

(1 + ek2)3 −
c2d

2
2∆ek2

(1 + ek2)2

)
< 0, (3.13)

− 2c1d2
1e

2k1

(1 + ek1)3 + c1d
2
1e
k1

(1 + ek1)2 −
2∆a2
b32

< 0. (3.14)

Now, from the second inequalites of (3.3) and (3.4), we obtain from (3.10) that
η > 0. In addition, from conditions (3.1) and equation (3.6) we obtain Γ < 0. Hence,
(3.12) holds, since η > 0, a1, a2,Γ < 0 and c1, c2, d1, d2 > 0. Moreover, from the first
inequality of (3.4) and since Γ < 0, we deduce that (3.13) is true. Finally, from the
first inequality of (3.3), we obtain that (3.14) is also true.

So, we have shown, that if the conditions in the proposition hold, then G′′′(0) > 0.
Hence, for the Schwarzian derivative, we have Sf(0) < 0. Therefore, from Theorem 8
of [1], the zero equilibrium of (1.2) is stable.



On the stability of some systems of exponential difference equations 103

4. GLOBAL BEHAVIOUR OF SOLUTIONS OF SYSTEM (1.3)

In this section, we will investigate the asymptotic behaviour of the positive solutions of
(1.3). We will use the following theorem, which is essentially a slight modification
of Theorem 1.16 of [5]. The proof of Theorem 1.16 of [5] can be easily adapted to this
case.

Theorem 4.1. Let f , g, with f : R+ × R+ → R+, g : R+ × R+ → R+ be continuous
functions, where R+ = (0,∞). Let a, A, b, B be positive numbers, such that a < A,
b < B and f : [a,A]× [b, B]→ [a,A], g : [a,A]× [b, B]→ [b, B]. Consider the system
of difference equations

xn+1 = f(xn, yn), yn+1 = g(xn, yn), n = 0, 1, . . . (4.1)

Suppose that f(x, y) is a non-increasing function with respect to x and a non-decreasing
with respect to y. Moreover, suppose that g(x, y) is a non-increasing function with
respect to x and a non-increasing function with respect to y. Finally suppose that, if
m, M , r, R are real numbers such that if M = f(m,R), m = f(M, r), R = g(m, r),
r = g(M,R), then m = M and r = R. Then the system of difference equations (4.1)
has a unique positive equilibrium (x̄, ȳ) and every positive solution of System (4.1)
which satisfies xn0 ∈ [a,A], yn0 ∈ [b, B] tends to the unique equilibrium of (4.1).

We now prove the following result.

Proposition 4.2. Consider System (1.3). Suppose that the following relations hold
true:

k1c1 < 1, k3c2 < 1 (4.2)

and
a1a2k2 < (1− k1c1)(1− k3c2). (4.3)

Then System (1.3) has a unique positive equilibrium and every positive solution of
System (1.3) tends to the unique equilibrium of (1.3) as n→∞.

Proof. System (1.3) can be written as xn+1 = f(xn, yn), yn+1 = g(xn, yn), where

f(x, y) = a1
y2

b1 + y
+ c1

ed1−k1x

1 + ed1−k1x
(4.4)

and
g(x, y) = a2

eb2−k2x

1 + eb2−k2x
+ c2

ed2−k3y

1 + ed2−k3y
. (4.5)

We can now easily see that f(x, y) is non-increasing in x and non-decreasing in y,
while g(x, y) is non-increasing in x and non-increasing in y.

We now show that f : [a,A]× [b, B]→ [a,A] and g : [a,A]× [b, B]→ [b, B], where

B = a2 + c2, A = a1
B2

b1 +B
+ c1,
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b = a2
eb2−k2A

1 + eb2−k2A
+ c2

ed2−k3B

1 + ed2−k3B
and a = a1

b2

b1 + b
+ c1

ed1−k1A

1 + ed1−k1A
.

Indeed, from (4.5), we can easily obtain that g(x, y) ≤ a2 + c2 = B. Now, for y ≤ B,
from (4.4), we get f(x, y) ≤ a1

B2

b1+B + c1 = A. Moreover, for x ≤ A and y ≤ B from
(4.5), we obtain

g(x, y) ≥ a2
eb2−k2A

1 + eb2−k2A
+ c2

ed2−k3B

1 + ed2−k3B
= b.

Finally, taking x ≤ A, y ≥ b from (4.4), we conclude that

f(x, y) ≥ a1
b2

b1 + b
+ c1

ed1−k1A

1 + ed1−k1A
= a.

Now, let m,M, r,R be positive real numbers such thatM = f(m,R), m = f(M, r),
R = g(m, r) and r = g(M,R). Therefore, we obtain M −m = f(m,R)− f(M, r) and
R− r = g(m, r)− g(M,R). So, we can write

M −m = f(m,R)− f(M,R) + f(M,R)− f(M, r)

and
R− r = g(m, r)− g(M, r) + g(M, r)− g(M,R).

Using the Mean Value Theorem, we obtain

M −m = fx(ξ1, R)(m−M) + fy(M, ξ2)(R− r)

and
R− r = gx(ξ3, r)(m−M) + gy(M, ξ4)(r −R)

for some ξ1, ξ3 ∈ (m,M) and ξ2, ξ4 ∈ (r,R). Therefore, we can write

|M −m| ≤ |fx(ξ1, R)||m−M |+ |fy(M, ξ2)||R− r| (4.6)

and
|R− r| ≤ |gx(ξ3, r)||m−M |+ |gy(M, ξ4)||r −R|. (4.7)

However, we have

fx(ξ1, R) = −c1k1e
d1−k1ξ1

(1 + ed1−k1ξ1)2 , fy(M, ξ2) = a1
2b1ξ2 + ξ2

2
(b1 + ξ2)2 , (4.8)

gx(ξ3, r) = −a2k2e
b2−k2ξ3

(1 + eb2−k2ξ3)2 , gy(M, ξ4) = −c2k3e
d2−k3ξ4

(1 + ed2−k3ξ4)2 . (4.9)

From (4.6), (4.7), (4.8), (4.9), we obtain

|M −m|(1− k1c1) ≤ a1|R− r|, |R− r|(1− k3c2) ≤ a2k2|M −m|. (4.10)
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Therefore, from (4.10), we conclude that

|M −m| ≤ a1a2k2
(1− k1c1)(1− k3c2) |M −m|. (4.11)

Hence, from (4.3), (4.10) and (4.11), we obtain

M = m, R = r.

Let now (xn, yn) be an arbitrary solution of (1.3). From the discussion above, it is
obvious that y1 ≤ B. Then we can see that x2 ≤ A. In addition, we also have y2 ≤ B
and so we can get y3 ≥ b. Finally, since we also have x3 ≤ A, we obtain x4 ≥ a. Hence,
we have shown that xn ∈ [a,A], yn ∈ [b, B], for all n ≥ 4.

Therefore, from Theorem 4.1, System (1.3) has a unique positive equilibrium (x̃, ỹ)
and every positive solution of System (1.3) tends to the unique positive equilibrium as
n→∞. This completes the proof of the proposition.

Proposition 4.3. Consider System (1.3), where the conditions in Proposition 4.2
hold. In addition, suppose that the following relation holds true:

k1k3c1c2 + k2a1a2 < 1. (4.12)

Then the unique positive equilibrium (x̃, ỹ) of System (1.3) is globally asymptotically
stable.
Proof. First, we will prove that (x̃, ỹ) is locally asymptotically stable. The linearised
system of (1.3) is

wn+1 = Awn, A =
[
α β
γ δ

]
, wn =

[
xn
yn

]
.

where
α = − c1k1e

d1−k1x̃

(1 + ed1−k1x̃)2 , β = a1(ỹ2 + 2b1ỹ)
(b1 + ỹ)2 ,

γ = − a2k2e
b2−k2x̃

(1 + eb2−k2x̃)2 , δ = − c2k3e
d2−k3ỹ

(1 + ed2−k3ỹ)2 .

The characteristic equation of A is λ2−(α+δ)λ+αδ−βγ = 0. From relation (4.12), we
obtain αδ− βγ < 1. Moreover, form (4.2), we obtain |α+ δ| < 1 +αδ− βγ. Therefore,
from Theorem 1.3.4 of [13], we deduce that (x̃, ỹ) is locally asymptotically stable.
Using Proposition 4.2, we conclude that (x̃, ỹ) is globally asymptotically stable. This
completes the proof of the proposition.

5. GLOBAL BEHAVIOUR OF SOLUTIONS OF SYSTEM (1.4)

In this section, we will investigate the asymptotic behaviour of the positive solutions of
(1.4). We will use the following theorem, which is essentially a slight modification
of Theorem 1.16 of [5]. The proof of Theorem 1.16 of [5] can be easily adapted to this
case.
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Theorem 5.1. Let f , g, with f : R+ × R+ → R+, g : R+ × R+ → R+ be continuous
functions, where R+ = (0,∞). Let a, A, b, B be positive numbers, such that a < A,
b < B and f : [a,A]× [b, B]→ [a,A], g : [a,A]× [b, B]→ [b, B]. Consider the system
of difference equations

xn+1 = f(xn, yn), yn+1 = g(xn, yn), n = 0, 1, . . . (5.1)

Suppose that f(x, y) is a non-increasing function with respect to x and a non-decreasing
with respect to y. Moreover, suppose that g(x, y) is a non-decreasing function with
respect to x and a non-increasing function with respect to y. Finally suppose that, if
m, M , r, R are real numbers such that if m = f(M, r), M = f(m,R), r = g(m,R),
R = g(M, r), then m = M and r = R. Then the system of difference equations (5.1)
has a unique positive equilibrium (x̄, ȳ) and every positive solution of system (5.1)
which satisfies xn0 ∈ [a,A], yn0 ∈ [b, B] tends to the unique equilibrium of (5.1).

We now prove the following result.

Proposition 5.2. Consider system (1.4). Suppose that the following relations hold
true:

k1c1 < 1, k2c2 < 1, a1, a2 < 1 (5.2)

and
a1a2 < (1− k1c1)(1− k2c2). (5.3)

Then System (1.4) has a unique positive equilibrium and every positive solution of the
System (1.4) tends to the unique equilibrium of (1.4) as n→∞.

Proof. System (1.4) can be written as xn+1 = f(xn, yn), yn+1 = g(xn, yn), where

f(x, y) = a1
y2

b1 + y
+ c1

ed1−k1x

1 + ed1−k1x
(5.4)

and
g(x, y) = a2

x2

b2 + x
+ c2

ed2−k2y

1 + ed2−k2y
. (5.5)

We can now easily see that f(x, y) is non-increasing in x and non-decreasing in y,
while g(x, y) is non-decreasing in x and non-increasing in y.

We now show that f : [a,A]× [b, B]→ [a,A] and g : [a,A]× [b, B]→ [b, B], where

A = a1c2 + c1
1− a1a2

+ θ, B = a2c1 + c2
1− a1a2

+ θ,

a = c1
ed1−k1A

1 + ed1−k1A
and b = c2

ed2−k2B

1 + ed2−k2B

for some θ ∈ (0,∞). If y ≤ B, from (5.4), we have

f(x, y) ≤ a1y + c1 ≤ a1

(a2c1 + c2
1− a1a2

+ θ
)

+ c1 ≤ A.
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Next, if x ≤ A, from (5.5), we get

g(x, y) ≤ a2

(a1c2 + c1
1− a1a2

+ θ
)

+ c2 ≤ B.

Moreover, if x ≤ A, from (5.4), we obtain

f(x, y) ≥ c1
ed1−k1A

1 + ed1−k1A
= a.

Finally, for y ≤ B, from (5.5) we obtain

g(x, y) ≥ c2
ed2−k2B

1 + ed2−k2B
= b.

In addition, working in the same way as in the proof of Proposition 4.2, we can show
that there exist real numbers m, M , r, R such that if m = f(M, r), M = f(m,R),
r = g(m,R), R = g(M, r), then m = M and r = R.

Moreover, from (1.4), we can see that xn+1 ≤ a1yn + c1, yn+1 ≤ a2xn + c2.
So, we get xn+2 ≤ a1a2xn + a1c2 + c1, yn+2 ≤ a1a2yn + a2c1 + c2. We now let
wn+2 = a1a2wn + a1c2 + c1 and zn+2 = a1a2zn + a2c1 + c2 with x0 = w0, y0 = z0,
x1 = w1 and y1 = z1. These two equations are essentially linear difference equations
of first order, so solvable ones (many recent equations and systems are solved by using
the equation such as [25–27,29,33]). Solving these equations, we obtain

wn = A1(a1a2) n
2 +A2(−1)n(a1a2) n

2 + a1c2 + c1
1− a1a2

and
zn = B1(a1a2) n

2 +B2(−1)n(a1a2) n
2 + a2c1 + c2

1− a1a2
,

respectively, where A1, A2, B1, B2 depend on the initial conditions. Now, since x0 = w0,
y0 = z0, x1 = w1, y1 = z1, working inductively, we obtain that xn ≤ wn, yn ≤ zn,
n ∈ N, and therefore we conclude that for some n0 ∈ N+ and θ ∈ (0,∞), we have
xn ≤ a1c2+c1

1−a1a2
+ θ = A and yn ≤ a2c1+c2

1−a1a2
+ θ = B, n ≥ n0. Hence, we can easily see

that xn ≥ a, n > n0 and yn ≥ b, n > n0. So, we have obtained that xn ∈ [a,A] and
yn ∈ [b, B], n > n0.

Therefore, using Theorem 5.1, we deduce that System (1.4) has a unique positive
equilibrium (x̃, ỹ), and every positive solution of System (1.4) tends to the unique
positive equilibrium as n→∞. This completes the proof of the proposition.

Proposition 5.3. Consider System (1.4). If the conditions in Proposition 5.2 hold,
then the unique positive equilibrium (x̃, ỹ) of System (1.4) is globally asymptotically
stable.
Proof. Firstly, we will prove that (x̃, ỹ) is locally asymptotically stable. The linearised
system of (1.4) is

wn+1 = Awn, A =
[
α β
γ δ

]
, wn =

[
xn
yn

]
,
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where
α = − c1k1e

d1−k1x̃

(1 + ed1−k1x̃)2 , β = a1(ỹ2 + 2b1ỹ)
(b1 + ỹ)2 ,

γ = a2(x̃2 + 2b2x̃)
(b2 + x̃)2 , δ = − c2k2e

d2−k2ỹ

(1 + ed2−k2ỹ)2 .

The characteristic equation of A is λ2 − (α + δ)λ + αδ − βγ = 0. Therefore, from
relation (5.2), we obtain αδ− βγ < 1 and from (5.3), we obtain |α+ δ| < 1 +αδ− βγ.
Therefore, from Theorem 1.3.4 of [13], we deduce that (x̃, ỹ) is locally asymptotically
stable. Using Proposition 5.2, we conclude that (x̃, ỹ) is globally asymptotically stable.
This completes the proof of the proposition.

6. GLOBAL BEHAVIOUR OF SOLUTIONS OF SYSTEM (1.5)

In this section, we will investigate the asymptotic behaviour of the positive solutions of
(1.5). We will use the following theorem, which is essentially a slight modification
of Theorem 1.16 of [5]. The proof of Theorem 1.16 of [5] can be easily adapted to this
case.

Theorem 6.1. Let f , g, with f : R+ × R+ → R+, g : R+ × R+ → R+ be continuous
functions, where R+ = (0,∞). Let a, A, b, B be positive numbers, such that a < A,
b < B and f : [a,A]× [b, B]→ [a,A], g : [a,A]× [b, B]→ [b, B]. Consider the system
of difference equations

xn+1 = f(xn, yn), yn+1 = g(xn, yn), n = 0, 1, . . . (6.1)

Suppose that f(x, y) is a non-decreasing function with respect to x and a non-increasing
with respect to y. Moreover, suppose that g(x, y) is a non-increasing function with
respect to x and a non-increasing function with respect to y. Finally suppose that, if
m, M , r, R are real numbers such that if M = f(M, r), m = f(m,R), R = g(m, r),
r = g(M,R), then m = M and r = R. Then the system of difference equations (6.1)
has a unique positive equilibrium (x̄, ȳ) and every positive solution of system (6.1)
which satisfies xn0 ∈ [a,A], yn0 ∈ [b, B] tends to the unique equilibrium of (6.1).

We now prove the following result.

Proposition 6.2. Consider System (1.5). Suppose that the following relations hold
true:

k3c2 < 1, a1 < 1 (6.2)

and
k1c1a2k2 < (1− k3c2)(1− a1). (6.3)

Then System (1.5) has a unique positive equilibrium and every positive solution of
System (1.5) tends to the unique equilibrium of (1.5) as n→∞.
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Proof. System (1.5) can be written as xn+1 = f(xn, yn), yn+1 = g(xn, yn), where

f(x, y) = a1
x2

b1 + x
+ c1

ed1−k1y

1 + ed1−k1y
(6.4)

and
g(x, y) = a2

eb2−k2x

1 + eb2−k2x
+ c2

ed2−k3y

1 + ed2−k3y
. (6.5)

We can now easily see that f(x, y) is non-decreasing in x and non-increasing in y,
while g(x, y) is non-increasing in x and non-increasing in y.

We now show that f : [a,A]× [b, B]→ [a,A] and g : [a,A]× [b, B]→ [b, B], where

A = c1
1− a1

+ θ, B = a2 + c2,

a = c1
ed1−k1B

1 + ed1−k1B
and b = a2

eb2−k2A

1 + eb2−k2A
+ c2

ed2−k3B

1 + ed2−k3B

for some θ ∈ (0,∞). If x ≤ A, then from (6.4) we get

f(x, y) ≤ a1x+ c1 ≤ a1

( c1
1− a1

+ θ
)

+ c1 ≤ A.

Now, from (6.5), we can easily see that g(x, y) ≤ a2 + c2 = B. So, if y ≤ B, from (6.4),
we obtain

f(x, y) ≥ c1
ed1−k1B

1 + ed1−k1B
= a.

Finally, if x ≤ A and y ≤ B, from (6.5) we obtain

g(x, y) ≥ a2
eb2−k2A

1 + eb2−k2A
+ c2

ed2−k3B

1 + ed2−k3B
= b.

In addition, working in the same way as in the proof of Proposition 4.2, we can show
that there exist real numbers m, M , r, R such that if M = f(M, r), m = f(m,R),
R = g(m, r), r = g(M,R), then m = M and r = R.

Moreover, we have xn+1 ≤ a1xn + c1, n ∈ N. We consider the difference equation
zn+1 = a1zn + c1, n ∈ N and we let zn be the solution such that z0 = x0. Then, we
have zn = (x0 − c1

1−a1
)an1 + c1

1−a1
, n ∈ N. Now, since z0 = x0, and working inductively,

we can show that xn ≤ zn, n ∈ N. Therefore, since a1 ∈ (0, 1), we get that for some
θ ∈ (0,∞) and n0 ∈ N+, we have xn ≤ c1

1−a1
+ θ = A, n ≥ n0. Finally, we can also

easily see that xn ≥ a, n ≥ 2, and yn ≤ B, n ≥ 1, and yn ≥ b, n > n0. Hence, we have
obtained that xn ∈ [a,A] and yn ∈ [b, B], n > n0.

Therefore, using Theorem 6.1, System (1.5) has a unique positive equilibrium (x̃, ỹ),
and every positive solution of System (1.5) tends to the unique positive equilibrium as
n→∞. This completes the proof of the proposition.

Proposition 6.3. Consider System (1.5). If the conditions in Proposition 6.2 hold,
then the unique positive equilibrium (x̃, ỹ) of System (1.5) is globally asymptotically
stable.
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Proof. Firstly, we will prove that (x̃, ỹ) is locally asymptotically stable. The linearised
system of (1.5) is

wn+1 = Awn, A =
[
α β
γ δ

]
, wn =

[
xn
yn

]
,

where
α = a1(x̃2 + 2b1x̃)

(b1 + x̃)2 , β = − c1k1e
d1−k1ỹ

(1 + ed1−k1ỹ)2 ,

γ = − a2k2e
b2−k2x̃

(1 + eb2−k2x̃)2 , δ = − c2k3e
d2−k3ỹ

(1 + ed2−k3ỹ)2 .

The characteristic equation of A is λ2− (α+δ)λ+αδ−βγ = 0. Now, αδ − βγ < 0 < 1.
Moreover, from relation (6.3) we obtain |α + δ| < 1 + αδ − βγ. Therefore, from
Theorem 1.3.4 of [13], we deduce that (x̃, ỹ) is locally asymptotically stable. Using
Proposition 6.2, we conclude that (x̃, ỹ) is globally asymptotically stable. This com-
pletes the proof of the proposition.

7. GLOBAL BEHAVIOUR OF SOLUTIONS OF SYSTEM (1.6)

In this section, we will investigate the asymptotic behaviour of the positive solutions
of (1.6). We will use the following theorem, which is essentially a slight modification
of Theorem 1.16 of [5]. The proof of Theorem 1.16 of [5] can be easily adapted to this
case.
Theorem 7.1. Let f , g, with f : R+ × R+ → R+, g : R+ × R+ → R+ be continuous
functions, where R+ = (0,∞). Let a, A, b, B be positive numbers, such that a < A,
b < B and f : [a,A]× [b, B]→ [a,A], g : [a,A]× [b, B]→ [b, B]. Consider the system
of difference equations

xn+1 = f(xn, yn), yn+1 = g(xn, yn), n = 0, 1, . . . (7.1)

Suppose that f(x, y) is a non-decreasing function with respect to x and a non-increasing
with respect to y. Moreover, suppose that g(x, y) is a non-increasing function with
respect to x and a non-decreasing function with respect to y. Finally suppose that, if
m, M , r, R are real numbers such that if M = f(M, r), m = f(m,R), R = g(m,R),
r = g(M, r), then m = M and r = R. Then the system of difference equations (7.1)
has a unique positive equilibrium (x̄, ȳ) and every positive solution of System (7.1)
which satisfies xn0 ∈ [a,A], yn0 ∈ [b, B] tends to the unique equilibrium of (7.1).

We now prove the following result.
Proposition 7.2. Consider System (1.6). Suppose that the following relations hold
true:

a1, a2 < 1 (7.2)
and

c1c2k1k2 < (1− a1)(1− a2). (7.3)
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Then System (1.6) has a unique positive equilibrium and every positive solution of
System (1.6) tends to the unique equilibrium of (1.6) as n→∞.

Proof. System (1.6) can be written as xn+1 = f(xn, yn), yn+1 = g(xn, yn), where

f(x, y) = a1
x2

b1 + x
+ c1

ed1−k1y

1 + ed1−k1y
(7.4)

and
g(x, y) = a2

y2

b2 + y
+ c2

ed2−k2x

1 + ed2−k2x
. (7.5)

We can now easily see that f(x, y) is non-decreasing in x and non-increasing in y,
while g(x, y) is non-increasing in x and non-decreasing in y.

We now show that f : [a,A]× [b, B]→ [a,A] and g : [a,A]× [b, B]→ [b, B], where

A = c1
1− a1

+ θ, B = c2
1− a2

+ θ, a = c1
ed1−k1B

1 + ed1−k1B
and b = c2

ed2−k2A

1 + ed2−k2A

for some θ ∈ (0,∞). If x ≤ A, from (7.4) we have

f(x, y) ≤ a1

( c1
1− a1

+ θ
)

+ c1 ≤ A

and if y ≤ B, from (7.5) we obtain

g(x, y) ≤ a2

( c2
1− a2

+ θ
)

+ c2 ≤ B.

Moreover, for y ≤ B, from (7.4) we get

f(x, y) ≥ c1
ed1−k1B

1 + ed1−k1B
= a

and for x ≤ A, from (7.5) we obtain

g(x, y) ≥ c2
ed2−k2A

1 + ed2−k2A
= b.

In addition, working in the same way as in the proof of Proposition 4.2, we can show
that there exist real numbers m, M , r, R such that if M = f(M, r), m = f(m,R),
R = g(m,R), r = g(M, r), then m = M and r = R.

Moreover, we have xn+1 ≤ a1xn + c1, n ∈ N. We consider the difference equation
zn+1 = a1zn + c1, n ∈ N and we let zn be the solution such that z0 = x0. Then, we
have

zn =
(
x0 −

c1
1− a1

)
an1 + c1

1− a1
, n ∈ N.

Now, since z0 = x0, and working inductively, we can show that xn ≤ zn, n ∈ N.
Therefore, since a1 ∈ (0, 1) we get that for some θ ∈ (0,∞) and n0 ∈ N+, we have
xn ≤ A = c1

1−a1
+ θ, n ≥ n0. In the same way, we can prove that for some θ ∈ (0,∞)
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and n0 ∈ N+, we have yn ≤ B = c2
1−a2

+ θ, n ≥ n0. So, we can now easily see that
xn ≥ a, n > n0, and yn ≥ b, n > n0. Hence, we have obtained that xn ∈ [a,A] and
yn ∈ [b, B], n > n0.

Therefore, using Theorem 7.1, System (1.6) has a unique positive equilibrium (x̃, ỹ),
and every positive solution of System (1.6) tends to the unique positive equilibrium as
n→∞. This completes the proof of the proposition.

Proposition 7.3. Consider System (1.6). If the conditions in Proposition 7.2 hold,
then the unique positive equilibrium (x̃, ỹ) of System (1.6) is globally asymptotically
stable.

Proof. First, we will prove that (x̃, ỹ) is locally asymptotically stable. The linearised
system of (1.6) is

wn+1 = Awn, A =
[
α β
γ δ

]
, wn =

[
xn
yn

]
,

where
α = a1(x̃2 + 2b1x̃)

(b1 + x̃)2 , β = − c1k1e
d1−k1ỹ

(1 + ed1−k1ỹ)2 ,

γ = − c2k2e
d2−k2x̃

(1 + ed2−k2x̃)2 , δ = a2(ỹ2 + 2b2ỹ)
(b2 + ỹ)2 .

The characteristic equation of A is λ2 − (α + δ)λ + αδ − βγ = 0. Now, from
(7.2), we obtain that αδ − βγ < αδ < 1. Moreover, from relation (7.3) we obtain
|α+ δ| < 1 + αδ − βγ. Therefore, from Theorem 1.3.4 of [13], we deduce that (x̃, ỹ) is
locally asymptotically stable. Using Proposition 7.2, we conclude that (x̃, ỹ) is globally
asymptotically stable. This completes the proof of the proposition.
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