Identyfikatory
Języki publikacji
Abstrakty
The occurrence of asymmetric probability distributions is quite common. Phenomena such as salary, number of failures, sound level values, etc. have skewed distributions. In such cases, estimating the mean using the interval method can be inaccurate as it ignores the distribution’s asymmetry. Another method of constructing confidence intervals, which does not require symmetry of distributions, is the method based on Chebyshev’s theorem. However, the intervals thus obtained are symmetrical. The approach proposed in this article uses the concept of Chebyshev’s theorem and semivariances to construct new confidence and uncertainty intervals. The article examines the properties of semivariance-based confidence intervals for long-term noise indicators from acoustic monitoring of the city of Gdansk and compares them with classical confidence intervals. The new uncertainty assessment tool proposed in this article in the form of a semivariance-based uncertainty interval can therefore be the basis for new uncertainty assessment methodology and more effective uncertainty.
Czasopismo
Rocznik
Tom
Strony
279--293
Opis fizyczny
Bibliogr. 34 poz., tab., wzory
Twórcy
autor
- Lublin University of Technology, 20-618 Lublin, Poland
Bibliografia
- [1] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Guide to the expression of uncertainty in measurement (JCGM 100:2008). https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
- [2] Liu, X., Xia, Y., & Rui, X. (2023). Uncertainty evaluation of multilateration-based geometric error measurement considering the repeatability of positioning of the machine tool. Metrology and Measurement Systems, 30(1), 49-63. https://doi.org/10.24425/mms.2023.144864
- [3] Neska, M. C., & Opara, T. A. (2021). Uncertainty of pressure measurement in a single-bed adsorber. Metrology and Measurement Systems, 29(1), 93-108. https://doi.org/10.24425/mms.2022.138544
- [4] Gutiérrez, R., Ramírez, M., Olmeda, E., & Díaz, V. (2015). An Uncertainty Model of Approximating the Analytical Solution to the Real Case in the Field of Stress Prediction. Metrology and Measurement Systems, 22(3), 429-442. https://doi.org/10.1515/mms-2015-0031
- [5] Tchebichef, P. L. (1867). Des valeurs moyennes, Journal de Mathématiques Pures et Appliquées 2e serie. 12, 177-184.
- [6] Markov, A. (1884). On Certain Applications of Algebraic Continued Fractions [Unpublished doctoral dissertation]. St. Petersburg.
- [7] Steliga, K., Szynal, D. (2010). On Markov-Type Inequalities. International Journal of Pure and Applied Mathematics, 58(2), 137-152.
- [8] Ferentios, K. (1982). On Tcebycheff’s type inequalities. Trabajos de Estadistica y de Investigacion Operativa, 33(1), 125-132. https://doi.org/10.1007/bf02888707
- [9] Berge, P. O. (1938). A Note on a Form of Tchebycheff’s Theorem for Two Variables. Biometrika, 29(3/4), 405. https://doi.org/10.2307/2332015
- [10] Lal, D. N., (1955). A note on a form of Tchebycheff’s inequality for two or more variables. Sankhya, 15(3), 317-320.
- [11] Isii, K. (1959). On a method for generalizations of Tchebycheff’s inequality. Annals of the Institute of Statistical Mathematics, 10(2), 65-88.
- [12] Kotz, S., Balakrishnan, N., Johnson, N. L. (2000). Continuous Multivariate Distributions, Volume 1: Models and Applications (2nd ed.). John Wiley & Sons, Inc.
- [13] Birnbaum, Z. W., Raymond, J., & Zuckerman, H. S. (1947). A Generalization of Tshebyshev’s Inequality to Two Dimensions. The Annals of Mathematical Statistics, 18(1), 70-79. https://doi.org/10.1214/aoms/1177730493
- [14] Olkin, I., & Pratt, J. W. (1958). A Multivariate Tchebycheff Inequality. The Annals of Mathematical Statistics, 29(1), 226-234. https://doi.org/10.1214/aoms/1177706720
- [15] Godwin H. J. (1964). Inequalities on Distribution Functions. Hafner Publishing Company.
- [16] Savage, I. R. (1961). Probability inequalities of the Tchebycheff type. Journal of Research of the National Bureau of Standards - B, Mathematics and Mathematical Physics B, 65B(3), 211-222.
- [17] Ion, R. A. (2001). Nonparametric Statistical Process Control. [Doctoral dissertation, University of Amsterdam]. UvA-DARE.
- [18] Berck, P., & Hihn, J. M. (1982). Using the Semivariance to Estimate Safety-First Rules. American Journal of Agricultural Economics, 64(2), 298-300. https://doi.org/10.2307/1241139
- [19] Boasson, V., Boasson E., Zhou Z., (2011). Portfolio optimization in a mean-semivariance framework, Investment Management and Financial Innovations, 8(3), 58-68.
- [20] Nawrocki, D. N. (1999). A Brief History of Downside Risk Measures. The Journal of Investing, 8(3), 9-25. https://doi.org/10.3905/joi.1999.319365
- [21] Nantell, T. J., & Price, B. (1979). An Analytical Comparison of Variance and Semivariance Capital Market Theories. The Journal of Financial and Quantitative Analysis, 14(2), 221. https://doi.org/10.2307/2330500
- [22] Neave, E. H., Ross, M. N., & Yang, J. (2008). Distinguishing upside potential from downside risk. Management Research News, 32(1), 26-36. https://doi.org/10.1108/01409170910922005
- [23] Markowitz, H. (1991). Portfolio Selection: Efficient Diversification of Investment (2E), Malden, MA: Blackwell Publishers Inc.
- [24] International Organization for Standardization. (2017). Acoustics - Description, measurement and assessment of environmental noise. Part 2: Determination of sound pressure levels (ISO Standard No. 1996-2:2017). https://www.iso.org/standard/59766.html
- [25] Gaja, E., Gimenez, A., Sancho, S., & Reig, A. (2003). Sampling techniques for the estimation of the annual equivalent noise level under urban traffic conditions. Applied Acoustics, 64(1), 43-53. https://doi.org/10.1016/s0003-682x(02)00050-6
- [26] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Supplement 1 to the “Guide to the expression of uncertainty in measurement” - Propagation of distributions using a Monte Carlo method (JCGM 101:2008). https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf
- [27] Przysucha, B., Pawlik, P., Stępień, B., Surowiec, A. (2021). Impact of the noise indicators components correlation Ld , Le, Ln on the uncertainty of the long-term day-evening-night noise indicator Lden. Measurement, 179, 109399. https://doi.org/10.1016/j.measurement.2021.109399
- [28] Makarewicz, R., & Galuszka, M. (2011). Empirical revision of noise mapping. Applied Acoustics, 72(8), 578-581. https://doi.org/10.1016/j.apacoust.2010.10.012
- [29] Przysucha, B., Szeląg, A., & Pawlik, P. (2020). Probability distributions of one-day noise indicators in the process of the type A uncertainty evaluation of long-term noise indicators. Applied Acoustics, 161, 107158. https://doi.org/10.1016/j.apacoust.2019.107158
- [30] Batko W., Przysucha B., & Tekiel M. (2014, September). Analysis of asymmetry of probability distributions of the sound level measurement results (pp. 1-5). Proceedings of the 7th Forum Acusticum, the Polish Acoustical Society, Kraków, Poland.
- [31] Barrigón Morillas, J. M., & Prieto Gajardo, C. (2014). Uncertainty evaluation of continuous noise sampling. Applied Acoustics, 75, 27-36. https://doi.org/10.1016/j.apacoust.2013.07.005
- [32] Ruggiero, A., Russo, D., & Sommella, P. (2016). Determining environmental noise measurement uncertainty in the context of the Italian legislative framework. Measurement, 93, 74-79. https://doi.org/10.1016/j.measurement.2016.07.007
- [33] Peters, R. (2021). Uncertainty in Acoustics. Measurement, Prediction and Assessment (1st ed.). CRC Press.
- [34] Miao, Y., Yang, X., Zhu, G., Yang, W., Tian, J., & Dai, Y. (2023). Measurement uncertainty analysis of sound intensity using double-coupler calibration system. Measurement, 220, 113315. https://doi.org/10.1016/j.measurement.2023.113315
Identyfikator YADDA
bwmeta1.element.baztech-33a7f81d-0e87-403e-9a52-5217fe0386af