Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
All-Polish Seminar on Mössbauer Spectroscopy OSSM 2016 (11th ; 19-22 June 2016 ; Radom-Turno, Poland)
Języki publikacji
Abstrakty
Multiferroic 0.5BiFeO3-0.5Pb(Fe0.5Ta0.5)O3 solid solution is a material that exhibits ferroelectric and antiferromagnetic orderings in ambient temperature. The solid solution was obtained as a result of a conventional reaction in a solid state. The obtained material is a dense, fine-grained sinter whose surface was observed by scanning electron microscopy (SEM) and stoichiometry was confirmed by energy dispersive X-ray spectroscopic (EDS) analysis. According to the X-ray powder diffraction (XRD) measurements, the main phase is R3c space group with admixture of Pm-3m regular phase. Small contribution of pyrochlore-like phase was also observed. Mössbauer spectroscopy suggested random distribution of Fe3+/Ta5+ cations in the B sites of ABO3 compound. Reduction of the magnetic hyperfine field with an increase in the substitution of Ta5+ in Fe3+ neighbourhood was also observed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
177--181
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Institute of Electron Technology Krakow Division, 39 Zabłocie Str., 30-701 Kraków, Poland, Tel.: +48 12 656 3144 ext. 265, Fax: +48 12 656 3626
autor
- National Centre for Nuclear Research, 7 Sołtana Str., 05-400 Otwock/Świerk, Poland and National Medicines Institute, 30/34 Chełmska Str., 00-725 Warsaw, Poland
autor
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
autor
- Institute of Electron Technology Krakow Division, 39 Zabłocie Str., 30-701 Kraków, Poland, Tel.: +48 12 656 3144 ext. 265, Fax: +48 12 656 3626
autor
- Institute of Electron Technology Krakow Division, 39 Zabłocie Str., 30-701 Kraków, Poland, Tel.: +48 12 656 3144 ext. 265, Fax: +48 12 656 3626
Bibliografia
- 1. Scott, J. F. (2007). Data storage: Multiferroic memories. Nat. Mater., 6, 256–257. DOI: 10.1038/nmat1868.
- 2. Paik, H., Hwang, H., No, K., Kwon, S., & Cann, D. P. (2007). Room temperature multiferroic properties of single-phase (Bi0.9La0.1)FeO3–Ba(Fe0.5Nb0.5)O3 solid solution ceramics. Appl. Phys. Lett., 90, 042908. DOI: 10.1063/1.2434182.
- 3. Yuan, G. L., Or, S. W., Liu, J. M., & Liu, Z. G. (2006). Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett., 89, 052905. DOI:10.1063/1.2266992.
- 4. Zhang, S. T., Zhang, Y., Lu, M. H., Du, C. L., Chen, Y. F., Liu, Z. G., Zhu, Y. Y., Ming, N. B., & Pan, X. Q. (2006). Substitution-induced phase transition and enhanced multiferroic properties of BiLaFeO ceramics. Appl. Phys. Lett., 88, 162901. DOI: 10.1063/1.2195927.
- 5. Yang, Y., Liu, J. M., Huang, H. B., Zuo, W. Q., Bao, P., & Liu, Z. G. (2004). Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2Nb1/2)O3 single crystals. Phys. Rev. B, 70, 132101–132105. DOI: 10.1103/PhysRevB.70.132101.
- 6. Kulawik, J., & Szwagierczak, D. (2007). Dielectric properties of manganese and cobalt doped lead iron tantalate ceramics. J. Eur. Ceram. Soc., 27, 2281–2286. DOI: 10.1016/j.jeurceramsoc.2006.07.010.
- 7. Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., & Ramesh, R. (2003). Epitaxial BiFeO3 multiferroic thin fi lm heterostructures. Science, 299, 1719–1722. DOI: 10.1126/science.1080615.
- 8. Lampis, N., Sciau, P., & Lehmann, A. G. (2000). Rietveld refinements of the paraelectric and ferroelectric structures of PbFe0.5Ta0.5O3. J. Phys.-Condens. Matter, 12(11), 2367–2378. DOI: 10.1088/0953-8984/12/11/303.
- 9. Nomura, S., Takabayashi, H., & Nakagawa, T. (1968). Dielectric and magnetic properties of Pb(Fe1/2Ta1/2)O3. Jpn. J. Appl. Phys., 7, 600–604. DOI: 10.1143/JJAP.7.600.
- 10. Falqui, A., Lampis, N., Geddo-Lehmann, A., & Pinna, G. (2005). Low temperature magnetic behavior of perovskite compounds PbFe1/2Ta1/2O3 and PbFe1/2Nb1/2O3. J. Phys. Chem., 109, 22967–22970. DOI: 10.1080/00150193.2014.923682.
- 11. Martinez, R., Palai, R., Huhtinen, H., Liu, J., Scott, J. F., & Katiyar, R. S. (2010). Nanoscale ordering and multiferroic behavior in PbFe1/2Ta1/2O3. Phys. Rev. B, 82, 134104-1–134104-134110. DOI: 10.1103/PhysRevB.82.134104.
- 12. Kubrin, S. P., Raevskaya, S. I., Kuropatkina, S. A., Raevski, I. P., & Sarychev, D. A. (2006). Dielectric and Mössbauer studies of B-cation order–disorder effect on the properties of Pb(Fe1/2Ta1/2)O3 relaxorferroelectric. Ferroelectrics, 340, 155–159. DOI: 10.1080/00150190600889239.
- 13. Gilleo, M. A. (1960). Superexchange interaction in ferromagnetic garnets and spinels which contain randomly incomplete linkages. J. Phys. Chem. Solids, 13, 33–39. DOI: 10.1016/0022-3697(60)90124-4.
- 14. Kleemann, W., Shvartsman, V. V., Borisov, P., & Kania, A. (2010). Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys. Rev. Lett., 105, 257202-1–257202-4. DOI: 10.1103/PhysRevLett.105.257202.
- 15. Raevski, I. P., Kubrin, S. P., & Raevskaya, S. I. (2012). Magnetic properties of PbFe1/2Nb1/2O3: Mössbauer spectroscopy and first principles calculations. Phys. Rev. B, 85, 224412-1–224412-5. DOI: 10.1103/Phys-RevB.85.224412.
- 16. Laguta, V. V., Rosa, J., & Jastrabik, L. (2010). 93Nb NMR and Fe3+ EPR study of local magnetic properties of disordered magnetoelectric PbFe1/2Nb1/2O3. Mater. Res. Bull., 45, 1720–1727. DOI: 10.1016/j.materresbull.2010.06.060.
- 17. Kulawik, J., & Szwagierczak, D. (2007). Dielectric properties of manganese and cobalt doped lead iron tantalate ceramics. J. Eur. Ceram. Soc., 27, 2281–2286. DOI: 10.1016/j.jeurceramsoc.2006.07.010.
- 18. Wang, K. F., Liu, J. M., & Ren, Z. F. (2009). Multiferroicity. The coupling between magnetic and polarization. Adv. Phys., 58, 321–448. DOI: 10.1080/00018730902920554.
- 19. Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B, 192, 55–69. DOI: 10.1016/0921-4526(93)90108-I.
- 20. Lu, J., Qiao, L. J., Fu, P. Z., & Wu, Y. C. (2011). Phase equilibrium of Bi2O3-Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal. J. Cryst. Growth, 318, 936–941. DOI: 10.1016/j.jcrysgro.2010.10.181.
- 21. Zachariasz, P., Stoch, A., Stoch, P., & Maurin, J. (2013). Hyperfine interactions in xBi0.95Dy0.05FeO3-(1-x)Pb(Fe2/3W1/3)O3 multiferrics. Nukleonika, 58(1), 53–56.
- 22. Ivanov, S. A., Nordblad, P., Tellgren, R., Ericsson, T., & Rundlof, H. (2007). Structural, magnetic and Mössbauer spectroscopic investigations of the magnetoelectric relaxor Pb(Fe0.6W0.2Nb0.2)O3. Solid State Sci., 9, 440–450. DOI: 10.1016/j.solidstatesciences. 2007.03.018.
- 23. Blanco, M. C., Franco, D. G., Jalit, Y., Pannunzio Miner, E. V., Berndt, G., Paesano Jr., A., Nieva, G., & Carbonio, R. I. E. (2012). Synthesis, magnetic properties and Mössbauer spectroscopy for the pyrochlore family Bi2BB’O7 with B = Cr and Fe and B’ = Nb, Ta and Sb. Physica B, 407, 3078–3080. DOI: 10.1016/j.physb.2011.12.029.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33a66b84-20f8-44d7-bb57-fe35fa89ef6c