PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of the content of phosphates in water on the propagation speed of ultrasonic waves

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The phosphate content of a test sample is one of the indicators of the trophic status of the test water. In this work, an attempt was made to use a non-destructive ultrasonic technique to determine this parameter. For this purpose, a specially prepared measuring station was used to test distilled water samples with different phosphate contents. Specially prepared samples contained 0, 20, 40, 60, 80, and 100 kg/m3 of phosphates. In addition, tests were carried out on the effect of sample temperature on the values of the characteristic parameter of the wave, in the range from 12 to 30°C. All tests were carried out using two ultrasonic heads with a wave frequency of 2 MHz. The ultrasonic wave parameter analysed in the study was the propagation speed of the ultrasonic wave. The results obtained indicate that the ultrasonic method is useful for non-destructive evaluation of phosphate content in the sample. Additionally, they show a large influence of the sample temperature on the results read.
Czasopismo
Rocznik
Strony
152--157
Opis fizyczny
Bibliogr. 40 poz., il. kolor., wykr.
Twórcy
  • Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Poland
  • Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Poland
Bibliografia
  • [1] Ainslie MA, Laws RM, Sertlek HÖ. International airgun modeling workshop: validation of source signature and sound propagation models. Dublin, July 16, 2016. Problem Description. IEEE J Oceanic Eng. 2019;44(3):565-574. https://doi.org/10.1109/JOE.2019.2916956
  • [2] Annalakshmi G, Murugan SS. Analyzing the physical and chemical properties of water column nutrients and sediments along southeast coast of India. Fourth International Conference in Ocean Engineering (ICOE2018). 2019;22:985-996. https://doi.org/10.1007/978-981-13-3119-0_67
  • [3] Azmi NHBM. Bio-optical properties and seasonal variability of phytoplankton size classes in Peninsular Malaysia. Doctoral Thesis. Universiti Malaysia Terengganu. 2019.
  • [4] Ceccorulli G. Pizzoli M. Effect of water on the relaxation spectrum of poly (methylmethacrylate). Polym Bull. 2001; 47(3-4):283-289. https://doi.org/10.1007/s289-001-8183-9
  • [5] Cody R. Acoustic monitoring for leaks in water distribution networks. 2020. http://hdl.handle.net/10012/15773
  • [6] Davis CM, Jarzynski J. Liquid water - acoustic properties: absorption and relaxation. The Physics and Physical Chemistry of Water. 1972;1:443-461. https://doi.org/10.1007/978-1-4684-8334-5_12
  • [7] De Francesco A, Scaccia L, Formisano F, Maccarini M, De Luca F, Parmentier A et al. Shaping the terahertz sound propagation in water under highly directional confinement. Phys Rev B. 2020;101(5):054306. https://doi.org/10.1103/PhysRevB.101.054306
  • [8] Dera J. Fizyka morza (in Polish). PWN, Warsaw 2003.
  • [9] Dera J. Marine physics. Elsevier. 1992.
  • [10] Desjonquères C, Gifford T, Linke S. Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshwater Biol. 2020; 65(1):7-19. https://doi.org/10.1111/fwb.13356
  • [11] Fine RA, Wang DP, Millero FJ. The equation of state of water and seawater as determined from sound velocity data. J Acoust Soc Am. 1973;53(1):365-365. https://doi.org/10.1121/1.1982619
  • [12] Francois RE, Garrison GR. Sound absorption based on ocean measurements: Part I: pure water and magnesium sulfate contributions. J Acoust Soc Am. 1982;72(3):896-907. https://doi.org/10.1121/1.388170
  • [13] Geay T, Michel L, Zanker S, Rigby JR. Acoustic wave propagation in rivers: an experimental study. Earth Surf Dynam. 2019;7(2):537-548. https://doi.org/10.5194/esurf-7-537-2019
  • [14] Geraldes P, Barbosa J, Martins A, Dias A, Magalhães C, Ramos S et al. In situ real-time zooplankton detection and classification. Oceans 2019-Marseille IEEE. 2019;1-6. https://doi.org/10.1109/OCEANSE.2019.8867552
  • [15] Greenwood HJ. The compressibility of gaseous mixtures of carbon dioxide and water between 0 and 500 bars pressure and 450 and 800 centigrade. Amer J Sci. 1969;267:191-208.
  • [16] Grochowska J, Augustyniak R, Łopata M, Tandyrak R. Is it possible to restore a heavily polluted urban lake? Appl Sci. 2020;10(11):3698. https://doi.org/10.3390/app10113698
  • [17] Hamilton EL. Sediment sound velocity measurements made in situ from bathyscaph Trieste. J Geophys Res. 1963;68(21): 5991-5998. https://doi.org/10.1029/JZ068i021p05991
  • [18] Hermanowicz W, Dożańska W, Dojlido J, Koziorowski B, Zerbe J. Physical and chemical analysis of water and sewage. Arkady, Warsaw 1999.
  • [19] Hodges RP. Underwater acoustics: analysis, design and performance of sonar. John Wiley & Sons. 2011.
  • [20] Kajak Z. Hydrobiologia-limnologia. Ekosystemy wód śródlądowych (in Polish). PWN, Warsaw 2001.
  • [21] Koszela J, Koszela-Marek E, Sysak Z. Weryfikacja zmian ściśliwości wody i roztworu soli NaCl pod wpływem wysokich ciśnień (in Polish). Górnictwo i Geoinżynieria. 2008;2:205-211.
  • [22] Koszela-Marek E. Charakterystyka zmian ściśliwości roztworów soli NaCl pod wpływem wysokich ciśnień hydrostatycznych (in Polish). Górnictwo i Geoinżynieria. 2009;1:361-367.
  • [23] Kozak M, Siejka P. Soot contamination of engine oil - the case of a small turbocharged spark-ignition engine. Combustion Engines. 2020;182(3):28-32. https://doi.org/10.19206/CE-2020-305
  • [24] Küsel ET, Siderius M. Comparison of propagation models for the characterization of sound pressure fields. IEEE J Oceanic Eng. 2019;44(3):598-610. https://doi.org/10.1109/JOE.2018.2884107
  • [25] Leroy CC, Mellen RH, Waton G. Absorption of sound in fresh and sea water. Handbook of Elastic Properties of Solids, Liquids, and Gases. 2001;83-115.
  • [26] Li C. An efficient multi-layer boundary element method for direct computation of sound propagation in shallow water environments. Doctoral Thesis. Massachusetts Institute of Technology. 2019. https://hdl.handle.net/1721.1/124032
  • [27] Li C, Campbell BK, Liu Y, Yue DK. A fast multi-layer boundary element method for direct numerical simulation of sound propagation in shallow water environments. J Comput Phys. 2019;392:694-712. https://doi.org/10.1016/j.jcp.2019.04.068
  • [28] Lunkov AA. Reverberation of wideband signals in shallow water when using sound focusing. Acoust Phys+. 2018; 64(3):347-355. https://doi.org/10.1134/S1063771018030120
  • [29] Mackenzie KV. Formulas for the computation of sound speed in sea water. J Acoust Soc Am. 1960;32(1):100-104. https://doi.org/10.1121/1.1907859
  • [30] Mellen RH, Simmons VP, Browning DG. Low‐frequency sound absorption in sea water: a borate‐complex relaxation. J Acoust Soc Am. 1980; 67(1):341-342. https://doi.org/10.1121/1.384469
  • [31] Murali K, Sriram V, Samad A, Saha N. Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018). 2018;1&2. https://doi.org/10.1007/978-981-13-3119-0
  • [32] Oku T, Hirahara H, Akimoto T. Visualization of deformation and sound emission from bubble in water using VOF method. 18th International Symposium on Flow Visualization, ETH Zurich 2018.
  • [33] Opaliński P. Wpływ stratyfikacji termicznej i zasolenia na prędkość rozchodzenia się fali akustycznej w wodzie oraz jej wpływ na wynik pomiarów batymetrycznych. Dokonania naukowe doktorantów: nauki inżynieryjne (in Polish). Creativetime, Kraków 2013;151-158.
  • [34] Pitzer KS, Lippmann DZ, Curl Jr RF, Huggins CM, Petersen DE. The volumetric and thermodynamic properties of fluids. II. Compressibility factor, vapor pressure and entropy of vaporization. J Am Chem Soc. 1955;77(13):3433-3440. https://doi.org/10.1021/ja01618a002
  • [35] Proulx R, Waldinger J, Koper N. Anthropogenic landscape changes and their impacts on terrestrial and freshwater sound-scapes. Current Landscape Ecology Reports. 2019;4(3):41-50. https://doi.org/10.1007/s40823-019-00038-4
  • [36] Putland RL, Mensinger AF. Exploring the soundscape of small freshwater lakes. Ecol Inform. 2020;55:101018. https://doi.org/10.1016/j.ecoinf.2019.101018
  • [37] Rountree RA, Juanes F, Bolgan M. Temperate freshwater soundscapes: a cacophony of undescribed biological sounds now threatened by anthropogenic noise. Plos One. 2020; 15(3):0221842. https://doi.org/10.1371/journal.pone.0221842
  • [38] Shagapov VS, Galimzyanov MN, Vdovenko II, Khabeev NS. Characteristic features of sound propagation in a warm bubble-laden water. Journal of Engineering Physics and Thermophysics. 2018;91(4):854-863. https://doi.org/10.1007/s10891-018-1809-9
  • [39] Skonieczna D, Szczyglak P, Lemecha M. Modelling lubricating oil wear using fuzzy logic. Combustion Engines. 2024. https://doi.org/10.19206/CE-183186
  • [40] Wilson WD. Ultrasonic measurement of the velocity of sound in distilled and sea water. US Naval Ordnance Laboratory. 1960;6746.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33a641f5-dc7f-49da-a6ee-17021731a3a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.