PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On extremal index of max-stable stationary processes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this contribution we discuss the relation between Pickands-type constants defined for certain Brown-Resnick stationary proces W(t), t ϵ R, as [wzór] (set 0Z = R if δ = 0) and the extremal index of the associated max-stable stationary process ξW. We derive several new formulas and obtain lower bounds for ΉδW if W is a Gaussian or a Lévy process. As a by-product we show an interesting relation between Pickands constants and lower tail probabilities for fractional Brownian motions.
Rocznik
Strony
299--317
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
autor
  • University of Lausanne, Bâtiment Extranef, UNIL-Dorigny, 1015 Lausanne, Switzerland
Bibliografia
  • [1] J. M. P. Albin, On extremal theory for stationary processes, Ann. Probab. 18 (1990), pp. 92-128.
  • [2] J. M. P. Albin, E. Hashorva, L. Ji, and C. Ling, Extremes and limit theorems for difference of chi-type processes, ESAIM Probab. Stat. 20 (2016), pp. 349-366.
  • [3] B. Basrak, R. A. Davis, and T. Mikosch, Regular variation of GARCH processes, Stochastic Process. Appl. 99 (2002), pp. 95-115.
  • [4] B. Basrak, D. Krizmanić, and J. Segers, A functional limit theorem for dependent sequences with infinite variance stable limits, Ann. Probab. 40 (2012), pp. 2008-2033.
  • [5] B. Basrak and J. Segers, Regularly varying multivariate time series, Stochastic Process. Appl. 119 (2009), pp. 1055-1080.
  • [6] S. Berman, Sojourns and extremes of stationary processes, Ann. Probab. 10 (1982), pp. 1-46.
  • [7] P. J. Bickel and M. Rosenblatt, On some global measures of the deviations of density function estimates, Ann. Statist. 1 (1973), pp. 1071-1095.
  • [8] P. J. Bickel and M. Rosenblatt, Two-dimensional random fields, in: Multivariate Analysis, III (Proc. Third Internat. Sympos., Wright State Univ., Dayton, Ohio, 1972), Academic Press, New York 1973, pp. 3-15.
  • [9] K. Burnecki and Z. Michna, Simulation of Pickands constants, Probab. Math. Statist. 22 (2002), pp. 193-199.
  • [10] R. A. Davis, T. Mikosch, and Y. Zhao, Measures of serial extremal dependence and their estimation, Stochastic Process. Appl. 123 (2013), pp. 2575-2602.
  • [11] K. Dębicki, Ruin probability for Gaussian integrated processes, Stochastic Process. Appl. 98 (2002), pp. 151-174.
  • [12] K. Dębicki, S. Engelke, and E. Hashorva, Generalized Pickands constants and stationary max-stable processes, Extremes 20 (3) (2017), pp. 493-517.
  • [13] K. Dębicki, E. Hashorva, L. Ji, and C. Ling, Extremes of order statistics of stationary processes, TEST 24 (2015), pp. 229-248.
  • [14] K. Dębicki, E. Hashorva, L. Ji, and K. Tabiś, Extremes of vector-valued Gaussian processes: Exact asymptotics, Stochastic Process. Appl. 125 (2015), pp. 4039-4065.
  • [15] K. Dębicki and K. M. Kosiński, An Erdös-Révész type law of the iterated logarithm for order statistics of a stationary Gaussian process, J. Theoret. Probab. (2016).
  • [16] K. Dębicki, Z. Michna, and T. Rolski, Simulation of the asymptotic constant in some fluid models, Stoch. Models 19 (2003), pp. 407-423.
  • [17] M. Delorme, A. Rosso, and K. J. Wiese, Pickands’ constant at first order in an expansion around Brownian motion, J. Phys. A 50 (16) (2017).
  • [18] A. B. Dieker and T. Mikosch, Exact simulation of Brown-Resnick random fields at a finite number of locations, Extremes 18 (2015), pp. 301-314.
  • [19] A. B. Dieker and B. Yakir, On asymptotic constants in the theory of extremes for Gaussian processes, Bernoulli 20 (2014), pp. 1600-1619.
  • [20] C. Dombry and Z. Kabluchko, Ergodic decompositions of stationary max-stable processes in terms of their spectral functions, Stochastic Process. Appl. 127 (6) (2017), pp. 1763-1784.
  • [21] P. Doukhan, A. Jakubowski, and G. Lang, Phantom distribution functions for some stationary sequences, Extremes 18 (2015), pp. 697-725.
  • [22] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin 1997.
  • [23] S. Engelke and Z. Kabluchko, Max-stable processes associated with stationary systems of independent Lévy particles, Stochastic Process. Appl. 125 (2015), pp. 4272-4299.
  • [24] M. Falk, J. Hüsler, and R.-D. Reiss, Laws of Small Numbers: Extremes and Rare Events, third extended edition, Birkhäuser/Springer Basel AG, Basel 2011.
  • [25] A. J. Harper, Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function, Ann. Appl. Probab. 23 (2013), pp. 584-616.
  • [26] A. J. Harper, Pickands’ constant Hα does not equal 1/Γ(1/α), for small α, Bernoulli 23 (1) (2017), pp. 582-602.
  • [27] E. Hashorva, Representations of max-stable processes via exponential tilting, arXiv:1605.03208v3, (2016).
  • [28] J. Hüsler, Extremes of a Gaussian process and the constant Hα, Extremes 2 (1999), pp. 59-70.
  • [29] A. Janssen and J. Segers, Markov tail chains, J. Appl. Probab. 51 (2014), pp. 1133-1153.
  • [30] Z. Kabluchko, M. Schlather, and L. de Haan, Stationary max-stable fields associated to negative definite functions, Ann. Probab. 37 (2009), pp. 2042-2065.
  • [31] Z. Kabluchko and Y. Wang, Limiting distribution for the maximal standardized increment of a random walk, Stochastic Process. Appl. 124 (2014), pp. 2824-2867.
  • [32] D. Krizmanić, Functional weak convergence of partial maxima processes, Extremes 19 (2016), pp. 7-23.
  • [33] R. Kulik and P. Soulier, Heavy tailed time series with extremal independence, Extremes 18 (2015), pp. 273-299.
  • [34] M. Marcus, Upper bounds for the asymptotic maxima of continuous Gaussian processes, Ann. Math. Statist. 43 (1972), pp. 522-533.
  • [35] N. M. Markovich, Modeling clusters of extreme values, Extremes 17 (2014), pp. 97-125.
  • [36] Z. Michna, On tail probabilities and first passage times for fractional Brownian motion, Math. Methods Oper. Res. 49 (1999), pp. 335-354.
  • [37] T. Mikosch and C. Stărică, Limit theory for the sample autocorrelations and extremes of a GARCH (1, 1) process, Ann. Statist. 28 (2000), pp. 1427-1451.
  • [38] T. Mikosch and Y. Zhao, The integrated periodogram of a dependent extremal event sequence, Stochastic Process. Appl. 125 (2015), pp. 3126-3169.
  • [39] I. Molchanov and K. Stucki, Stationarity of multivariate particle systems, Stochastic Process. Appl. 123 (2013), pp. 2272-2285.
  • [40] M. Oesting, Z. Kabluchko, and M. Schlather, Simulation of Brown-Resnick processes, Extremes 15 (2012), pp. 89-107.
  • [41] J. Pickands, III, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969), pp. 75-86.
  • [42] V. I. Piterbarg, Twenty Lectures about Gaussian Processes, Atlantic Financial Press, London-New York 2015.
  • [43] C. Qualls and H. Watanabe, Asymptotic properties of Gaussian processes, Ann. Math. Statist. 43 (1972), pp. 580-596.
  • [44] G. O. Roberts, J. S. Rosenthal, J. Segers, and B. Sousa, Extremal indices, geometric ergodicity of Markov chains, and MCMC, Extremes 9 (2006), pp. 213-229.
  • [45] J. Segers, Approximate distributions of clusters of extremes, Statist. Probab. Lett. 74 (2005), pp. 330-336.
  • [46] J. Segers, Rare events, temporal dependence, and the extremal index, J. Appl. Probab. 43 (2006), pp. 463-485.
  • [47] J. Segers, Y. Zhao, and T. Meinguet, Radial-angular decomposition of regularly varying time series in star-shaped metric spaces, Extremes 20 (3) (2017), pp. 539-566.
  • [48] Q.-M. Shao, Bounds and estimators of a basic constant in extreme value theory of Gaussian processes, Statist. Sinica 6 (1996), pp. 245-258.
  • [49] S. A. Stoev, On the ergodicity and mixing of max-stable processes, Stochastic Process. Appl. 118 (2008), pp. 1679-1705.
  • [50] S. A. Stoev, Max-stable processes: Representations, ergodic properties and statistical applications, in: Dependence in Probability and Statistics, P. Doukhan, G. Lang, D. Surgailis, and G. Teyssière (Eds.), Lecture Notes in Statist., Vol. 200, Springer, 2010, pp. 21-42.
  • [51] Y. Wang, Extremes of q-Ornstein-Uhlenbeck processes, https://arxiv.org/abs/1609.00338, (2016).
  • [52] Y. Wang and S. A. Stoev, On the structure and representations of max-stable processes, Adv. in Appl. Probab. 42 (2010), pp. 855-877.
Uwagi
To Tomasz Rolski, thankful for all the support and ideas you shared with us!
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33a22717-4c8a-44c7-8f2a-d8192f96bfb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.